Metadata, Moderation & Vote
Sampling for improved search



The big picture

* Closed tracker sites (like TvTorrents) work
really well — why?
— |Identities are not cheap (but not so expens.)
— Ratio enforcement (but not difficult to hack)

— Moderation with high quality meta-data on a
webpage only viewable by authenticated ID’s

— Run own tracker which only authenticated
identities can use (-ish)



The big picture

* Can this be done in a fully distributed way?
* |f so we need:

— Distributed ratio enforcement

e BarterCast (long-run), Give-to-get (short-run)
— Distributed moderation and metadata

* ModerationCast + VoteCast
— Distributed tracker

 DHT-based (Kashmir), gossip-based? (littleBird,
torrentSmell)



Talks

* | will talk about a design for Voting on
moderations (VoteCast)
— Already a paper on this with sim. results
— Now in the process of implementation
— Should be ready to deploy end of Now.

* Victor will talk about some ideas on a gossip-
based distributed tracker (TorrentSmell)

— There are notes on the wiki



Assumed Protocols

 We assume that BuddyCast (a PSS), BarterCast
(a reputation system), and ModerationCast
(Meta-data spread) exist

* Currently moderationCast is not fully
implemented — some code from Vincent

* | am not going to talk about BuddyCast or
BarterCast



ModerationCast Overview

Vd N\ oge
- ( ' positive vote

II\ ‘ N / ’/ '.':\'I
I
—/‘ metadata '\- =/

B creator - ™
> (R ‘)
___.-“, + l<—<~ m | l\_ _/‘

(1 negative vote

-



VoteCast problem

Given there are moderations in my localDB

Can | rank them in some way based on how
other nodes have voted on Moderators

Hence can | determine for a given moderator

how many +votes and -negative votes there
are in the population bound to them

Need to do this in a distributed way, which is
not easily (i.e. a few nodes) colludable, such
that simple spam can be prevented



VoteCast

e VoteCast is composed of two subprotocols
— BallotBox and Voxpopuli

* First we'll talk about BallotBox
— Gossip-based — requires random pairings
— Push gossip — spread your votes to others

— Local state update - count of +ve and —ve votes against
a list of moderators

— One node one vote (per moderator) principle

— Every node is conducting it’s own ballot by receiving
votes from each new random node it encounters.
Hence sample the population



BallotBox - stopping bad guys

e But since identities are cheap in Tribler, what
would stop a kind of Sybil voting attack?
— One node could create a million identities and vote up
their own spam
 Here we use BarterCast to supply us with an
estimate of the upload flow to a node

* Only nodes that are above some Threshold get

their votes counted

— We define an experience function E(i) which will tell
you if node i is experienced or not (binary)



BallotBox Pseudocode

do forever
wait A
j < GetRandomNode()
Send vote_list; to
vote_list; <= Receive(j)
if Ei(j) = true
ballot_box <= Merge(ballot_box, vote_list;)

(a) BallotBox

do forever
vote_list; < receive(*)
Send vote_list; to i
if (i) = true
ballot_box <— Merge(ballot_box, vote_list,)

(b) BallotBox passive thread



Experience

false otherwise.

, true it f._.; =T,
Ei(j) = { ’

(0 otherwise.

| 1 iff E;(7) = true;
ei(J) = |

I i(J)
CEV=N2 D N

iEN j#i



BallotBox - what should T be?

What should our threshold value T be set to?

We don’t know — how much is a bad guy
prepared to pay in upload to get an identity?

So we just picked a few arbitrary values and
ran some sims on traces

What we wanted to see is nodes getting
experienced quickly — but not too quickly

The time to become experienced is a kind of
cost controlled by T.



How quickly does experience grow?

Collective Experience Value
o
=S

0 24 48 72 96 120 144 168

Time (hours)



Experienced core

-
peer
population
experienced _
O core . - new node entering
. ’ N O™ \ population
J Y '|
"' 1 0
S \
I\Jb

existing node entering
experience core



of Population

Prop.

Without bad guys

........

..............

/ 7 M1>M2>M3

/ Average
Trace 1 -----------
Traca 2 "o
Traca J ==

24 48 72 96 120 144 168

Time (hours)



Spam attack

e ey

experienced peer
core ; population

’
!
|
|
|

over time, / [J------
enter core

flash crowd
of spam

newly arrived
normal
nodes

€« )\




of defeated new nodes

Prop.

o

o O o o o o o

Spam attack

A -
A
i Flash crowd size:
i 1l x core size
%.: 2 X COYe S1zZe e

0 24 48 72 96 120 144 168
Time (hours)



Vox populi

New nodes have to wait a while to build up
experience from others

Hence during that time they they can’t count
any votes

Vox populi is an extra protocol that “fills-the-
gap” while waiting for experienced votes

Simply asks random nodes for their top-K
moderators and takes average



BallotBox + VoxPop

do forever
wait A
j < GetRandomNode()
Send vote_list; to j
vote_list; <= Receive(j)
if E(j) = true
ballot_box <= Merge(ballot_box, vote_list;)
end if
if num_unique_users(ballot_box) < B,
Send VP_request to j
topK; <— Receive(j)
topK_cache <= Merge(topK_cache, topK;)
end if

(a) BallotBox and VoxPopli active thread

do forever
vote_list, < receive(*)
Send vote_list; to i
if E,(i) = true
ballot_box <— Merge(ballot_box, vote_list;)

(b) BallotBox passive thread

do forever

VP_request, < receive(*)

if num_unique_users(ballot_box) = B,
topK; <= Rank(ballot_box)
Send topK; to i

else
Send null to j

end if

(c) VoxPopuli passive thread



Open Issues



Adaptive T?

We selected our T in a very arbitrary way
based on small old traces

Would make sense to adapt T to the
environment

If it appears spammers are obtaining
Experience E()=1 then increase T otherwise
decrease T?

How can we do this?



Adaptive T?

* First simple idea:

— If when receive new votes the variance of votes
increases theninc T

— If it decreases then dec T

— But how to measure variance?

— How much to incand dec T?

— Do we have upper and lower thresholds too?

* Any ideas or hunches?



Stopping “Front” or “Mole” attacks

* BarterCast uses a maxflow algorithm

* This is vulnerable to a so-called “Front” attack
— One node builds-up high experience by uploading
— The colludes with other identities
— Allowing those identities to appear experienced

— A clever spam node could do this incurring only
the cost of getting one identity experienced

* How to stop this?



Stopping Front attacks

* Maybe by modifying the way maxflow works
we can limit such attacks (by dividing flows

over siblings?)

* By using a distributed social network where
new nodes are invited by friends into the
system a given credit (like TvTorrents — avoid
whitewashing)?

* These ideas need thinking through...



