

Economics of P2P file- sharing systems

Basic introduction to the (sociology and) economics of file-sharing in BitTorrent systems

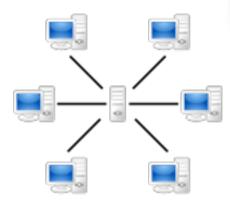
name: David Hales, Tribler team, TUD

date: Oct. 21, 2008

event: PetaMedia workshop

vrije Universiteit amsterdam

Talk Overview


- Basic introduction to:
 - P2P systems
 - Overlay networks
 - Gossip
 - Tribler.org client
- Basic introduction to:
 - BitTorrent file sharing protocol
 - Game theory / strategy / Tit-for-tat
 - Future directions in Tribler

If you are interested you can look-up the terms given in *red italics* on Wikipedia for good introductions


What are *Peer-to-Peer* systems?

tribler

- All nodes both clients and servers
- Multiple connections between nodes
- Notion of "equality" hence "peers"
- Pure P2P = Zero server
- It is about power not just as technology

Client / Server

Peer-to-Peer

What is an "overlay network"

- Most P2P networks are logical not physical
 - Use an overlay network
 - Assume an existing physical network that can connect all peers (usually the internet)
 - Store the logical addresses (IP's) of their "neighbours" or "view" onto the network
- Overlays are often self-repairing, robust to "churn" and light-weight
- Given their logical nature overlays can support arbitrary and dynamic topologies
- Structured and Unstructured overlays

Tribler Overlay and MegaCache

- Tribler is a (BitTorrent) file sharing client
- Implements gossip based semi-random overlay network (using BuddyCast protocol)
- Gossip protocols pair random nodes in the overlay and let them exchange information
- Tribler clients swap information (meta-data) and store it in local database: "MegaCache"
- Tribler users search own and remote MegaCaches using keywords to find content and other users

What has sociology or economics got to do with peer-to-peer systems?

P2P systems are socio-economic systems

- Peers cooperate collectively to achieve their goals
- No peer in the system controls everything
- Performance results from interactions
- At the end-of-day users (people) are in control
- Sociology and economics has studied such phenomena we should steal what we can!

OK but what use is this to me?

Knowing some of the economic background should help you to understand:

- the basic social/economic theory behind P2P like Tribler
- how this informs designs
- how such designs might be improved
- how to assess new developments and designs
- how to evaluate / compare different approaches

It is also a fascinating area in itself and P2P ideas are beginning to change economics itself! See: *Peer-to-peer (meme)*

In socio-economic systems individual interests may conflict with collective interests:

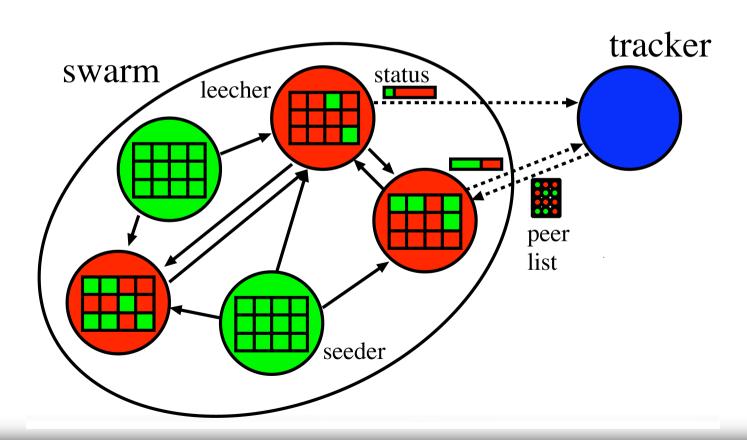
- e.g. over exploitation of a common resource (a river, a field, the atmosphere etc.)
- e.g. banks lending (to those who they know can not repay) to gain a commission by selling on the debt to other banks
- e.g. P2P file sharing system downloading more than uploading

Consider a P2P file sharing system:

- It is in the *collective interest* for all to upload to others so everyone gets the file quickly
- But it is in the *individual interest* to save bandwidth by only downloading and hence free-riding on others
- Free-riding (or free-loading) is a perennial problem in P2P file-sharing systems
- Any efficient system needs to tackle it in some way

The tragedy of the commons

- These kinds of situations have been termed "commons dilemmas" or "common pool resource dilemmas"
- Called "dilemmas" because we would all be better off if we "did the right thing" but there is an individual incentive to do the wrong thing
- G. Hardin (1968) summarized the issue in his famous paper: "The *Tragedy of the Commons"*
- These kinds of situations occur in P2P file-sharing systems like BitTorrent


Some BitTorrent Terminology

- Swarm: set of peers interested in a file
 - file is split in smaller chunks called pieces
 - seeder: holds a full copy of the data
 - leecher: holds only a part of the data (initially nothing)
- Tracker: centralized manager
 - keep track of all peers in the swarm
 - return list of current peers in swarm
- Torrent file: meta-data
 - contains pointer to tracker hosting the swarm
 - details about the file hash, no. of pieces, size etc.

BitTorrent Protocol

- tribler
- Get a list of other peers in the swarm from the tracker
- Ask peers their list of pieces and tell them what is yours
- Exchange pieces with appropriate peers

How to avoid the commons tragedy?

Central enforcement of correct behaviour

- require centralised agencies and policing
- ability to identify and track individuals centrally
- not suitable for pure P2P (but used with private trackers applying "ratio enforcement")

Decentralised methods

- self-policing producing incentives for cooperation
- do not require centralised coordination
- more suitable for pure P2P
- can apply ideas from "game theory"

A way to mathematically analyse games assuming we know:

- number of players
- possible moves they can make (strategies)
- outcome of game based on players moves (pay-off)
- desirability of game outcomes for each player (utility)

Games can be categorised into two types:

- 1) Zero-sum games
 - when one player wins another loses
 - summing the final utilities of players = 0
 - e.g. poker, chess, monopoly etc.

2) Non-zero-sum games

- utilities do not always sum to zero
- both players may lose or both may win
- considered to capture social / economic realities
- e.g. tragedy of the commons examples

Capturing a commons tragedy with a simple game

Consider a game composed of two players:

- each player:
 - has choice of one move (C or D)
 - -makes a single move then the game ends
 - -does not know how the other will move
 - -gets a payoff (or utility) based on how they moved and how the other player moved
- for certain payoff values this game can, minimally, capture a form of commons tragedy (or dilemma)
- a classic such game is called the Prisoner's Dilemma

Game is a PD when: T > R > P > S and 2R > T + S

Player 1 Player 2	C	D
C	(3) R R (3)	(5) T S (0)
D	(0) S T (5)	(1) P P (1)

The Prisoner's Dilemma - example games

P2

P

P1

Players =>	P1	P2		P1	P2	P1	P2
Moves =>	С	С		С	D	О	O
Payoffs =>	R	R		S	Т	Т	S
Values =>	3	3		0	5	5	0
Total =>	(6		5			5

A contradiction between collective and individual interests

Game theory assumes players are:

- rational attempt to maximise their utility
- selfish don't care about the other guy
- knowledgeable have complete information
- clever have unlimited computational time

Given these assumptions it can be proved:

- agents will select equilibria where no player will improve by changing strategy unilaterally
- many games have such equilibria by the famous John Nash (so-called Nash Equilibrium - NE)
- the NE for the PD is DD (all defect)

Previous example "one-shot" PD but:

- real world interactions often repeated
- might meet the guy you just ripped-off in the future
- allows for more complex sequence of strategies based on past interactions with others
- can punish someone tomorrow for defecting against you today - "the shadow of the future"

Iterated PD (IPD) captures this and, as we will see, maps well onto P2P file-sharing protocols like BitTorrent

What is the rational thing to do in the IPD?

Traditional game theory has trouble here:

- cooperative equilibria exist in infinitely repeated games but not in finite games of known length
- many equilibria exist and it is not clear which one would be chosen by rational agents
- In all cases defection on every round is still a equilibrium even when cooperative equilibria exist

For these reasons *Robert Axelrod* (political scientist), in the late 70's, decided to find out what kinds of strategies worked well in the IPD by using computer simulation

Axelrod's Tournament - programs as strategies

Axelrod organised an open IPD tournament:

- Academics were asked to submit programs (BASIC or FORTRAN) that would play the IPD against each other
- Nobody knew competitors code
- The only input would be the on-going past history of the game (a string of C's and D's)
- The aim was to get the highest score (utility) based on round-robin playoffs between all pairs of programs
- Axelrod's aim was to see which programs did best against all the others and understand why
- He wrote-up his results in the famous book "the evolution of cooperation"

Axlerod's Tournament - what happened?

Basic results were:

- many strategies were submitted (complex and simple)
- the one with the highest overall score turned out to be simple: tit-for-tat (TFT) or "look back"
- starts playing C, then "looked back" at the last move made by opponent and copied that move
- submitted by Psychologist Anatol Rapoport
- didn't "win" against each strategy but did better overall on average against all strategies
- TFT mechanism an example of "reciprocal altruism" (Robert Trivers)

What has this got to do with BitTorrent?

In the *BitTorrent protocol*:

- TFT-like method used for sharing files
- nodes form groups interested in a particular file (swarms) and swap or "barter" pieces with each other
- if a node does not upload data then this can be compared to playing defection
- it is punished in the future by being "choked" not getting upload from others
- even if you hack your client to be selfish the chances are the standard TFT-like protocol will do better overall
- Bram Cohen original BT designer inspired by Axelrod's tournaments

The Global Ecology of BitTorrent Clients

Many bittorrent clients exist in "the wild"

- Bittorrent 6 (from Bittorrent.com, formally utorrent)
- Others: Azureus, ABC, Transmission, many others...
- Tribler (of course)
- bad guy clients: BitThief, BitTyrant

Hence:

- The current bittorrent ecosystem is a global on-going experiment, like Axelrod's, but with huge user base and rich interactions (not just TFT) incredible strategy sophistication
- This is unprecedented and will surely lead to new economic theory in general!

BitTorrent Clients

tribler

BitTorrent client	FOSS	Linux/Unix	Windows	Mac OS	IPy6[1] ⊮	Programming language M	Based on 🖂	Interface M	Spyware/Adware /Malware-free ⋈	
ABC	Yes	Partial	Yes	No	buggy[2]	Python	BitTomado	GUI and web	Yes	
Acquisition	No	No	No	Yes	2	Objective-Cand Cocoa	Limewire	GUI	Yes	
Anatomic P2P	Yes	Yes	Yes	Yes	No	Python	BitTomado	GUI and old CLI	Yes	
Arctic Torrent	Yes	No	Yes	No	No	C++	libtoment	GUI	Yes	
aria2	Yes	Yes	Yes	Yes	2	C++	-	СП	Yes	
Azureus	Yes	Yes	Yes	Yes	Partial ^[3]	Java and SWT	-	GUI, CLI, Telnet, Web, XML over HTTP remote control API	Yes	
BitComet	No	No	Yes	No	No	C++	?	GUI	Yes [4]	
BitFlu	Yes	Yes	No	Yes	Yes	Perl	-	Telnet and Web	Yes	
BitLet	Planned	Yes	Yes	Yes	2	Java and Java Script	-	Web XHTML	Yes	
BitLord	No	No	Yes	No	No	C++	BitComet	GUI	Adware	
BitPump	No	No	Yes	No	No	C++	-	GUI	Yes	
Bits on Wheels	No	No	No	Yes	No	Objective-Cand Cocoa	-	GUI	Yes	
BitSpirit	No	No	Yes	No	No	C++	BitComet	GUI	Yes	
BitThief	No	Yes	Yes	Yes	2	Java	2	GUI	Yes	
BitTomado	Yes	Yes	Yes	Yes	Yes	Python	BitTorrent	GUI and CLI	Yes	
BitTorrent 5 / Mainline	Yes	Yes	Yes	Old version	No	Python	-	GUI and CLI	Yes	
BitTorrent 6	No	No	Yes	No	Yes	C++	μTorrent	GUIand CLI	Yes	
BitTyrant	Yes	Yes	Yes	Yes	Partial [3]	Java and SWT	Azureus	GUI, CLI, Telnet, Web, XML over HTTP remote control API	Yes	
Blizzard Downloader	No	No	Yes	Yes	7	2	BitTorrent client for early version	GUI	Yes	
Blog Torrent	Yes	No	Yes	Yes	7	2	BitTorrent client for early version	GUI	Malware-Status: unknown	
BTG	Yes	Yes	Partial ^[5]	Yes	No	C++	libtoment	CLI, GUI and web	Yes	

Tribler additions to BT incentive mechanisms

Incentives for seeding:

- BT relies on nodes uploading pieces even when they have all pieces (seeders)
- Currently incentives provided by central (closed) trackers
- Tribler is developing BarterCast for a fully distributed solution based on maxflow and gossiping of upload / download amounts

Incentives for "indirect reciprocity":

- BT, like TFT, needs direct interactions between pairs: "you scratch my back and I'll scratch yours"
- But for some applications we need indirect reciprocity: "you scratch his back and I'll scratch yours"
- Tribler is developing GiveToGet for a distributed solution for video streaming

References

- Nash, John (1950) Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36(1):48-49.
- John von Neumann and Oskar Morgenstern: Theory of Games and Economic Behavior, Princeton University Press (1944)
- Robert Axelrod (1984) The Evolution of Cooperation, Basic Books
- Nowak, M.A. and Sigmund, K. (1998) Evolution of indirect reciprocity by image scoring, Nature 393, 573.
- Garrett Hardin (1968) The Tragedy of the Commons Science 162, 1243-1248.
- Trivers, R.L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology. 46: 35-57
- Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge University Press

Panel Discussion: Future of P2P social content retrieval systems

Tribler context:

- Arbitrary metadata dissemination using overlay (ModerationCast)
- Rating and spam prevention (VoteCast)
- Fully distributed social networking (SocialCast)
- Social recommendation and distributed wiki
- P2P-Widgets, "techno-social OS"