From Selfish Nodes to Coperative Networks – Emergent Link-based Incentives in Peer-to-Peer Networks.

David Hales <u>www.davidhales.com</u>

Department of Computer Science University of Bologna Italy

DELL

Project funded by the Future and Emerging Technologies arm of the IST Programme

Talk Overview

My background and motivation

The problem

- A solution: Tags and how they work
- Applying in a P2P using re-wiring rules

Background and Motivation

- Computer Science and A.I
- Agent-Based Social Simulation (ABSS)
- Interest: Emergence of Cooperation (PD)
- Sociologists and engineers same questions!
- Now: Attempt to apply ideas from ABSS to some engineering problems (back to CS!)

The Problem

Consider some overlay network. If nodes are:

- Autonomous (not externally controllable)
 Selfish (maximise their own utility)
 Groody (local bill climb)
- Greedy (local hill-climb)
- Adaptive (copy other nodes and self-adapt)

How do we get the nodes to cooperative for the good of the network rather than simply free-ride?

The Prisoner's Dilemma

Given: T > R > P > S and 2R > T + S

Ways to get Cooperation

3'rd party enforcement – expensive, tends to centralisation (Thomas Hobbes 1660)

- Repeated interactions need repeated interactions & some altruism (Axelrod 1984)
- Fixed lattice interaction not good for dynamic networks (Nowak & May 1992)

What are "tags"

- Tags are observable labels, markings, social cues
- They are attached to agents
- Agents interact preferentially with those sharing the same tag no other function
- John Holland (1992) => tags powerful "symmetry breaking" function in "social-like" processes
- In GA-type interpretation, tags = parts of the genotype reflected directly in the phenotype

An Evolutionary Scenario

- Agents are selfish and greedy
- Copy the behaviors of more successful
- Randomly mutate strategies
- No population structure but....
- Agents preferentially interact with those sharing the <u>same tag</u>

Agents - a Tag and a PD strategy

Tag = (say) Some Integer

Game interaction between those with same tag (if possible)

DELIS Visualising the Process (Hales 2000)

P2P'04, Zurich, August 2004 - www.davidhales.com

P2P'04, Zurich, August 2004 – www.davidhales.com

A P2P Scenario

Consider a P2P:

- Assume nodes maintain some max. degree
- Node neighbours can be thought of as a group
- Nodes may be good guys, share resources with neighbours, or free-ride, using neighbours resources but not sharing theirs (PD)
- Sharing / free-riding is a Strategy

DEL

The neighbour links (as a whole) a kind of "tag" (if clustering high enough)

A P2P Scenario

Represent the P2P as a undirected graph

- Assume nodes are selfish and periodically:
 - Play PD with randomly selected neighbour
 - Compare performance to some randomly selected other node
 - If other node is doing better copy its neighbourhood and strategy
 - Mutate strategies and neighbourhood.

Design Decisions

- Mutation of view => replace all with single randomly chosen node
- Mutation of strategy = flip the strategy
- Node j copying a more successful node i => replace i view with j's plus j itself
- When maximum degree of a node is exceeded throw away a randomly chosen link

Copying a more successful node

Before $F_u > A_u$ $F_u > A_$

DEL

After Е С В D Α G A copies F F neighbours & strategy

In his case mutation has not changed anything

P2P'04, Zurich, August 2004 - www.davidhales.com

Where A_{μ} = average

utility of node A

The Simulation Cycle

LOOP some number of generations LOOP for each node (i) in the population N Select a game partner node (j) randomly from view If view empty, link to random node i (mutate view) Agent (i) and (j) invoke their strategies and get appropriate payoff **END LOOP** Select (N / 2) random pairs of nodes (i, j) lower scoring node copies higher scoring node Apply mutation to view and strategy of each reproduced node with probability m END LOOP

- Vary N between 4,000..120,000
- Maximum degree 20

- Initial topology random graph (not important)
- Initial strategies all defection (not random)
- Mutation rate m = 0.001 (small)
- PD payoffs: T=1.9, R=1, P=d, S=d
 - (where d is a small value)

P2P'04, Zurich, August 2004 – www.davidhales.com

A few more nodes

P2P'04, Zurich, August 2004 – www.davidhales.com

DELIS

A typical run (10,000 nodes)

Neighbour MF = 10

P2P'04, Zurich, August 2004 – www.davidhales.com

A 100 node example – after 500 generations

P2P'04, Zurich, August 2004 - www.davidhales.com

P2P'04, Zurich, August 2004 – www.davidhales.com

- From ANY initial starting topology / strategy mix same outcome (tried random, lattice, small world, all nodes disconnected, all defect, random, all coop)
- Typically a set of unstable components exist highly internally connected (L not much more than 1 and C very high)
- Constantly reforming and changing due to mutation and replication

DEL

Rough characterisation of disconnectedness = prob. that two random nodes are connected

P2P'04, Zurich, August 2004 – www.davidhales.com

Next steps

- So far robustness tested as effect of mutation static pop size – try various "churn rates"
- Treats node links as "one chunk" rather than selectively removing links
- Modified form might enhance BitTorrent?

File Sharing Scenario

- Simplified form of that given by Q. Sun & H.
 Garcia-Molina 2004
- Each node has variable giving proportion of capacity (100 units) devoted to generating queries against answering them [0..1]
 1=selfish, 0=altruism
- Each node has an answering power (prob. Of making a hit given any query =0.4 fixed)
- Flood fill query method, TTL's etc

▲ queries (nq) ● hits (nh)

nodes

Results showing number of queries (nq) and number of hits (nh) (averaged over cycle 40..50) for different network sizes (10 individual runs for each network size)

Cycles to high hit values (number of hits nh > 30) for different network sizes (10 runs each)

What's going on?

A <u>"Socially emergent incentive system</u>"?

- Selfish myopic behaviour causes nodes to migrate to more cooperative clusters and adopt cooperative strategies.
- Bad guys end-up alone or surrounded by other bad guys.
- being a bad guy is not a sustainable strategy
- However, at any given point in time a small number of bad guys are doing "better" than any good guys

Conclusion

Tag-like dynamics using <u>simple rewiring rules</u>
Free-riding low even though nodes are <u>selfish</u>
No knowledge of past interaction required
Scales well in tested domains
But: produces many (dynamic) components
What about whitewashers? Different churn rates? Hyper-rational or irrational behaviour?

DEL

Copying links and strategies?