
Replication, Replication and Replication - Some Hard Lessons from Model Alignment

Centre for Policy Modelling

http://cfpm.org

David Hales Centre for Policy Modelling, Manchester Metropolitan University, UK. http://www.davidhales.com M2M Workshop March 31st-1st April 2003.

Why replicate?

- Ensure that we fully understand the conceptual model (as described in a paper)
- Check that the published results are correct
- Add credibility to the published results (different languages, random number generators, implementations of the conceptual model)
- A base-line for further experimentation

Dealing with mismatches!

- Suppose we re-implement a model and the results don't match (either "eyeballing" or using statistical comparisons - kolmogorvsmirnof, chi² etc) – what then?
- One way forward re-implement again (another programmer, language etc) from conceptual model.
- This is what we did!
- It helps if you share an office!

The model (Riolo et al 2001)

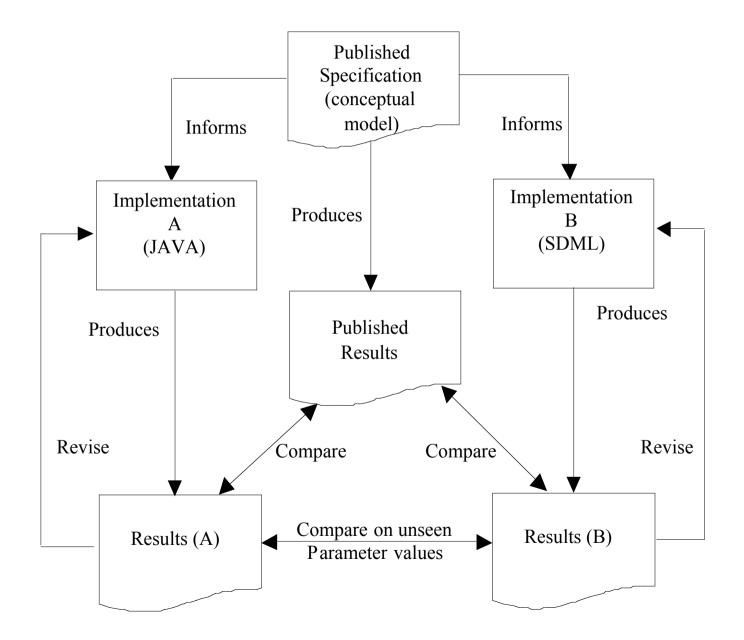
- Tag based model of altruism
- Holland (1992) discussed tags as a powerful "symmetry breaking" mechanism which could be useful for understanding complex "sociallike" processes
- Tags are observable labels or social cues
- Agents can observe the tags of others
- Tags evolve in the same way that behavioural traits evolve (mimicry, mutation etc)
- Agents may evolve behavioural traits that discriminate based on tags

The Model – Riolo et al 2001

- 100 agents, each agent has a tag (real number) and a tolerance (real number)
- In each cycle each agent is paired some number of times with a random partner.
- If their tags are similar enough (difference is less than or equal to the tolerance) then the agent makes a donation.
- Donation involves the giving agent losing fitness (the cost = 0.1) and the receiving agent gaining some fitness (=1)
- After each cycle a *tournament selection* process based on fitness, increases the number of copies of successful agents (high fitness) over those with low fitness.
- When successful agents are copied, mutation is applied to both tag, tolerance.

Original results (Riolo et al)

Effect of pairings on donation rate					
Parings	Donation rate (%)	Average tolerance			
1	2.1	0.009			
2	4.3	0.007			
3	73.6	0.019			
4	76.8	0.021			
6	78.7	0.024			
8	79.2	0.025			
10	79.2	0.024			


First re-implementation (A)

Effect of pairings on donation rate				
Parings	Donation rate (%)	Average tolerance		
1	5.1 (3.0)	0.010 (0.1)		
2	42.6 (38.3)	0.012 (0.5)		
3	73.7 (0.1)	0.018 (0.1)		
4	76.8 (0.0)	0.021 (0.0)		
6	78.6 (0.1)	0.023 (0.1)		
8	79.2 (0.0)	0.025 (0.0)		
10	79.4 (0.2)	0.026 (0.2)		

Second Re-implementation (B)

- A second implementation reproduced what was produced in the first implementation (A) but not the original results
- Outputs from A and B were checked over a wide range of the parameter space – different costs, agents and awards etc. and they matched.

Relationship of published model and two re-implementations

Re-implementations match but different from original published results

possible sources of the inconsistency:

- Implementation used to produce the published results did not match the published conceptual model.
- Some aspect of the conceptual model was not clearly stated in the published article
- Both re-implementations had somehow been independently and incorrectly implemented (in the same way).

Three variants of tournament selection

A problem of interpretation was identified in the tournament selection procedure for reproduction. In the original paper it is described thus:

"After all agents have participated in all parings in a generation agents are reproduced on the basis of their score relative to others. The least fit, median fit, and most fit agents have respectively 0, 1 and 2 as the expected number of their offspring. This is accomplished by comparing each agent with another randomly chosen agent, and giving an offspring to the one with the higher score."

Three variants of tournament selection

In both re-implementations the we assumed that when compared agents have *identical scores* a random choice is made between them to decide which to reproduce into the next generation (this is unspecified in the text).

Consequently, there are actually three possibilities for the tournament selection that are consistent with the description in text

Three Variants Of Tournament Selection

a) No Bias	b) Selected Bias	c) Random Bias	
LOOP for each agent in population Select current agent (a) from pop Select random agent (b) from pop IF score (a) > score (b) THEN Reproduce (a) in next generation ELSE IF score (a) < score (b) THEN Reproduce (b) in next generation ELSE (a) and (b) are equal Select randomly (a) or (b) to be reproduced into next generation. END IF END LOOP	LOOP for each agent in population Select current agent (a) from pop Select random agent (b) from pop IF score (a) >= score (b) THEN Reproduce (a) in next generation ELSE score (a) < score (b) Reproduce (b) in next generation END IF END LOOP	LOOP for each agent in population Select current agent (a) from pop Select random agent (b) from pop IF score (a) <= score (b) THEN Reproduce (b) in next generation ELSE score (a) > score (b) Reproduce (a) in next generation END IF END LOOP	

Results from 3 variants

	Result	s From The	Three Var	riants Of Tournament Selection				
Parings	No Bias (a)		Selected Bias (b)		Random Bias (c)			
	Don	Ave. Tol	Don	Ave Tol	Don	Ave Tol		
1	5.1	0.010	2.1	0.009	6.0	0.010		
2	42.6	0.012	4.4	0.007	49.6	0.013		
3	73.7	0.018	73.7	0.019	73.7	0.018		
4	76.8	0.021	76.9	0.021	76.8	0.021		
6	78.6	0.023	78.6	0.023	78.7	0.023		
8	79.2	0.025	79.2	0.025	79.2	0.025		
10	79.4	0.026	79.4	0.026	79.4	0.026		

Further experimentation

- Now we had two independent implementations of the Riolo model that matched the published results
- We were ready to experiment with the model to explore its robustness
- We changed the model such that donation only occurred if tag values were *strictly less* than the tolerance (we replaced a < with a <= in the comparison for a "tag match").

Strictly less than tolerance

Effect of pairings on donation rate (strict tolerance)					
Donation rate (%)	0.0 0.000				
0.0	0.000				
0.0	0.000				
0.0	0.000				
0.0	0.000				
0.0	0.000				
0.0	0.000				
0.0	0.000				
	Donation rate (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0				

Tolerance always set to zero (turned off)

	Resu	lts when tol	erance set	to zero for di	fferent Pa	irings
	No B	ias (a)	Selected Bias (b)		Random Bias (c)	
Parin gs	Don	Ave. Tol	Don	Ave Tol	Don	Ave Tol
1	3.1	0.000	0.0	0.000	4.1	0.000
2	65.4	0.000	0.0	0.000	65.6	0.000
3	75.3	0.000	0.0	0.000	75.4	0.000
4	77.6	0.000	0.0	0.000	77.7	0.000
6	78.8	0.000	0.0	0.000	78.8	0.000
8	78.9	0.000	1.9	0.000	78.9	0.000
10	79.0	0.000	7.6	0.000	79.0	0.000

With noise added to tags (Gaussian zero mean and stdev 10⁻⁶)

	Results when noised added to tag values on reproduction					
	No Bias (a)		Selected Bias (b)		Random Bias (c)	
Parin gs	Don	Ave. Tol	Don	Ave Tol	Don	Ave Tol
1	3.7	0.009	1.9	0.009	4.2	0.009
2	3.1	0.007	1.5	0.006	3.7	0.007
3	4.0	0.005	1.5	0.005	5.1	0.005
4	6.8	0.005	2.0	0.005	8.5	0.005
6	13.1	0.004	6.2	0.004	14.2	0.004
8	15.5	0.004	12.7	0.004	16.2	0.004
10	12.1	0.002	10.9	0.003	12.8	0.003

What's going on?

- In the "selected bias" setting, with zero tolerance, donation can only occur between "tag clones"
- Since initially it is unlikely that tag clones exist in the population, there is no donation
- The "selected bias" method of reproduction reproduces exactly the same population when all fitness values are equal (zero in this case).
- The other reproduction methods allow for some "noise" in the copying to the next generation such that a tag may be duplicated to two agents in the next generation even though all fitness scores are the same.
- A superficial analysis might conclude that tolerance *was* important in producing donation the original paper implies donation based on tolerance. This appears to be *false*.

A major conclusion

- The multiple re-implementations gave deeper insight into important (and previously hidden) aspects of the model.
- These have implications with respect to possible interpretations of the results.
- Confident of critique due to multiple implementations behaving in the same way and aligning with original results.

A general summary of Riolo et al's results

Compulsory donation to others who have identical heritable tags can establish cooperation without reciprocity in situations where a group of tag clones can replicate themselves exactly

(a far less ambitious claim than the original paper!).

Some practical lessons about aligning models

- Compare simulations first time cycles checks if initialised, same clearer than after new effects emerge or chaos appears
- Use statistical tests over long-term averages of many runs, (eg. Kolmogorov-Smirnov) to test if figures come from the same distribution
- When simulations don't align, progressively turn off features of the simulation (e.g. donation, reproduction, mutation etc.) until they do align. Then progressively reintroduce the features.
- Use different kinds of languages to re-implement a simulation (we used a declarative and an imperative language) programmed by different people.

Conclusions / Suggestions

- Description of a published ABM should be sufficient for others to re-implement
- Results should be independently replicated and confirmed before they are taken seriously
- Results can not be confirmed as correct but merely survive repeated attempts at refutation
- Everyone should get their students to replicate results from the literature (how many will survive? Certainly *not* 100% !)

M2M – open issues

- Cioffi-Revilla is a "typology" of ABM possible/desirable (dimensions: space/time/theoretical/empirical)?
- Kirman how do we move ABM towards (at least a partial) common framework (what would it look like)?
- Janssen using ABM to understand more clearly what existing learning functions can do their biases, strengths.
- Clarify and test model results via replication Rouchier, Edmonds, Hales.
- Duboz & Edwards Integrating top-down and bottom-up / virtual experiments – higher-level abstractions. But what about application to more *complex ABS*?
- Kluver topology as key dimension in soft comp. algorithms – results converged but how to identify *differences?*
- Gotts Trap² (formalised, abstracted classes of ABS with an interpretation). How to formalise / discover ?
- Flache steps in alignment can these be generalised (Heuristics)?

JASSS Special Issue Timetable

- May 1st Deadline for new or substantially revised submissions
- July 1st Deadline for reviews
- August 1st Deadline for revised papers
- October JASSS Special Issue

Goodbye from M2M-1... Big thanks to <u>GREQAM</u> for hosting and organising!

2005 – M2M2 ?

(http://cfpm.org/m2m).

(provisionally: Nick Gotts, Claudio Cioffi-Revilla, Guillaume Deffaunt)

MABS2003 @ AAMAS2003 (Melbourne July) (http://cfpm.org/mabs2003).

"Frontiers of Agent Based Social Simulation" (Kluwer) – call for chapters soon – attempt to address some of the open issues identified here.