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genetic algorithms. 

As the area of genetic algorithms is very wide, it is not possible to cover 
everything in these pages. But you should get some idea what genetic 
algorithms are and what they could be useful for. Do not expect any 
sophisticated mathematics theory here. 

Now please choose next to continue or you can choose any topic from the 
menu on the left side. If you do not want to read all the introductory 
chapters, you can skip directly to genetic algorithms and return later. 

Translations of these pages are also available - you may go to the 
Japanese translation (translated by Ishii Manabu) or to the Bulgarian 
translation (translated by Teodor Gig). The English version should be 
now more readable thanks to the corrections provided by Bob Owen. 

You can also check recommendations for your browser. Go here for a 
reference if you want to cite these pages. 
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About DNA

DNA (Deoxyribonucleic acid) 

This is a part of DNA. More pictures are available. 
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Introduction

I. Introduction 

First Words 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing area of artificial 
intelligence. 

As you can guess, genetic algorithms are inspired by Darwin's theory of evolution. Simply said, 
problems are solved by an evolutionary process resulting in a best (fittest) solution (survivor) - in other 
words, the solution is evolved. 

History 

Evolutionary computing was introduced in the 1960s by I. Rechenberg in his work "Evolution 
strategies" (Evolutionsstrategie in original). His idea was then developed by other researchers. Genetic 
Algorithms (GAs) were invented by John Holland and developed by him and his students and 
colleagues. This lead to Holland's book "Adaption in Natural and Artificial Systems" published in 1975. 

In 1992 John Koza has used genetic algorithm to evolve programs to perform certain tasks. He called his 
method "genetic programming" (GP). LISP programs were used, because programs in this language can 
expressed in the form of a "parse tree", which is the object the GA works on. 
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II. Biological Background 

Chromosome 

All living organisms consist of cells. In each cell there is the same set of chromosomes. Chromosomes 
are strings of DNA and serve as a model for the whole organism. A chromosome consists of genes, 
blocks of DNA. Each gene encodes a particular protein. Basically, it can be said that each gene encodes a 
trait, for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called alleles. Each 
gene has its own position in the chromosome. This position is called locus. 

Complete set of genetic material (all chromosomes) is called genome. Particular set of genes in genome 
is called genotype. The genotype is with later development after birth base for the organism's 
phenotype, its physical and mental characteristics, such as eye color, intelligence etc. 

Reproduction 

During reproduction, recombination (or crossover) first occurs. Genes from parents combine to form a 
whole new chromosome. The newly created offspring can then be mutated. Mutation means that the 
elements of DNA are a bit changed. This changes are mainly caused by errors in copying genes from 
parents. 

The fitness of an organism is measured by success of the organism in its life (survival). 
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III. Search Space 

Search Space 

If we are solving a problem, we are usually looking for some solution which will be the best among others. The space of all 
feasible solutions (the set of solutions among which the desired solution resides) is called search space (also state space). 
Each point in the search space represents one possible solution. Each possible solution can be "marked" by its value (or 
fitness) for the problem. With GA we look for the best solution among among a number of possible solutions - represented 
by one point in the search space. 

Looking for a solution is then equal to looking for some extreme value (minimum or maximum) in the search space. At 
times the search space may be well defined, but usually we know only a few points in the search space. In the process of 
using GA, the process of finding solutions generates other points (possible solutions) as evolution proceeds. 

Example of a search space 

The problem is that the search can be very complicated. One may not know where to look for a solution or where to start. 
There are many methods one can use for finding a suitable solution, but these methods do not necessarily provide the best 
solution. Some of these methods are hill climbing, tabu search, simulated annealing and the genetic algorithm. The 
solutions found by these methods are often considered as good solutions, because it is not often possible to prove what the 
optimum is.

NP-hard Problems 

One example of a class of problems which cannot be solved in the "traditional" way, are NP problems. 

There are many tasks for which we may apply fast (polynomial) algorithms. There are also some problems that cannot be 
solved algorithmically. 

There are many important problems in which it is very difficult to find a solution, but once we have it, it is easy to check 
the solution. This fact led to NP-complete problems. NP stands for nondeterministic polynomial and it means that it is 
possible to "guess" the solution (by some nondeterministic algorithm) and then check it. 
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If we had a guessing machine, we might be able to find a solution in some reasonable time. 

Studying of NP-complete problems is, for simplicity, restricted to the problems where the answer can be yes or no. Because 
there are tasks with complicated outputs, a class of problems called NP-hard problems has been introduced. This class is 
not as limited as class of NP-complete problems. 

A characteristic of NP-problems is that a simple algorithm, perhaps obvious at a first sight, can be used to find usable 
solutions. But this approach generally provides many possible solutions - just trying all possible solutions is very slow 
process (e.g. O(2^n)). For even slightly bigger instances of these type of problems this approach is not usable at all. 

Today nobody knows if some faster algorithm exists to provide exact answers to NP-problems. The discovery of such 
algorithms remains a big task for researchers (maybe you! :-)). Today many people think that such algorithms do not exist 
and so they are looking for an alternative method. An example of an alternative method is the genetic algorithm. 

Examples of the NP problems are satisfiability problem, travelling salesman problem or knapsack problem. Compendium 
of NP problems is available. 
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IV. Genetic Algorithm 

Basic Description 

Genetic algorithms are inspired by Darwin's theory of evolution. Solution to a problem solved by genetic 
algorithms uses an evolutionary process (it is evolved). 

Algorithm begins with a set of solutions (represented by chromosomes) called population. Solutions 
from one population are taken and used to form a new population. This is motivated by a hope, that the 
new population will be better than the old one. Solutions which are then selected to form new solutions 
(offspring) are selected according to their fitness - the more suitable they are the more chances they have 
to reproduce. 

This is repeated until some condition (for example number of populations or improvement of the best 
solution) is satisfied. 

Example
As you already know from the chapter about search space, problem solving can be often 
expressed as looking for the extreme of a function. We solve exactly this problem here - a 
function is given and GA tries to find the minimum of the function.
Try to run genetic algorithm in the following applet by pressing the Start button. The 
graph represents a search space and vertical lines represent solutions (points in search 
space). The red line is the best solution, green lines are the other ones. 
The Start button starts the algorithm, Step button performs one step (i.e. forming one new 
generation), Stop button stops the algorithm and Reset button resets the population. 

Here is applet, but your browser does not support Java. If you want to see applets, please check browser 
requirements. 

Outline of the Basic Genetic Algorithm 
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1.  [Start] Generate random population of n chromosomes (suitable solutions for the problem) 
2.  [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 
3.  [New population] Create a new population by repeating following steps until the new population 

is complete 
1.  [Selection] Select two parent chromosomes from a population according to their fitness 

(the better fitness, the bigger chance to be selected) 
2.  [Crossover] With a crossover probability cross over the parents to form new offspring 

(children). If no crossover was performed, offspring is the exact copy of parents. 
3.  [Mutation] With a mutation probability mutate new offspring at each locus (position in 

chromosome). 
4.  [Accepting] Place new offspring in the new population 

4.  [Replace] Use new generated population for a further run of the algorithm 
5.  [Test] If the end condition is satisfied, stop, and return the best solution in current population 
6.  [Loop] Go to step 2 

Some Comments 

As you can see, the outline of the Basic GA is very general. There are many parameters and settings that 
can be implemented differently in various problems. 

The first question to ask is how to create chromosomes and what type of encoding to choose. We then 
address Crossover and Mutation, the two basic operators of GA. Encoding, crossover and mutation are 
introduced in next chapter. 

The next question is how to select parents for crossover. This can be done in many ways, but the main 
idea is to select the better parents (best survivors) in the hope that the better parents will produce better 
offspring. 

You may think that generating populations from only from two parents may cause you to loose the best 
chromosome from the last population. This is true, and so elitism is often used. This means, that at least 
one of a generation's best solution is copied without changes to a new population, so the best solution can 
survive to the succeeding generation. 

You might be wandering, why genetic algorithms work. It can be partially explained by the Schema 
Theorem (Holland), however, this theorem has been criticized in recent times. If you want to know 
more, check other resources. 
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V. Operators of GA 

Overview 

As you can see from the genetic algorithm outline, the crossover and mutation are the most important 
parts of the genetic algorithm. The performance is influenced mainly by these two operators. Before we 
can explain more about crossover and mutation, some information about chromosomes will be given. 

Encoding of a Chromosome 

A chromosome should in some way contain information about solution that it represents. The most used 
way of encoding is a binary string. A chromosome then could look like this:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome is represented by a binary string. Each bit in the string can represent some 
characteristics of the solution. Another possibility is that the whole string can represent a number - this 
has been used in the basic GA applet. 

Of course, there are many other ways of encoding. The encoding depends mainly on the solved problem. 
For example, one can encode directly integer or real numbers, sometimes it is useful to encode some 
permutations and so on. 

Crossover 

After we have decided what encoding we will use, we can proceed to crossover operation. Crossover 
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operates on selected genes from parent chromosomes and creates new offspring. The simplest way how 
to do that is to choose randomly some crossover point and copy everything before this point from the 
first parent and then copy everything after the crossover point from the other parent. 

Crossover can be illustrated as follows: ( | is the crossover point):

Chromosome 1 11011 | 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

There are other ways how to make crossover, for example we can choose more crossover points. 
Crossover can be quite complicated and depends mainly on the encoding of chromosomes. Specific 
crossover made for a specific problem can improve performance of the genetic algorithm. 

Mutation 

After a crossover is performed, mutation takes place. Mutation is intended to prevent falling of all 
solutions in the population into a local optimum of the solved problem. Mutation operation randomly 
changes the offspring resulted from crossover. In case of binary encoding we can switch a few randomly 
chosen bits from 1 to 0 or from 0 to 1. Mutation can be then illustrated as follows:

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

The technique of mutation (as well as crossover) depends mainly on the encoding of chromosomes. For 
example when we are encoding permutations, mutation could be performed as an exchange of two genes. 
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VI. GA Example
Minimum of a Function 

About the Problem 

As you already know from the chapter about search space, problem solving can be often expressed as 
looking for extreme of a function defined over the search space. We solve exactly this problem here. 

A function is given and GA tries to find minimum of the function. For other problems we just have to 
define search space and the fitness function (for which we want to find an extreme). 

Example 

Try to run the genetic algorithm in the following applet by pressing Start button. The graph represents a 
search space and vertical lines represent solutions (points in search space). The red line is the best 
solution, green lines are the other ones. Old and new population is shown at the top of the applet. Each 
population consists of binary chromosomes - red and blue points mean zeros and ones. You can see the 
process of forming the new population in steps in the applet. 

Start button starts the algorithm, Step button performs one step (i.e. forming one new generation), Stop 
button stops the algorithm and Reset button resets the population.
It is suggested to start with pressing the Step button and to watch how GA works in details. The outline of 
GA has been introduced in one of the previous chapters. You can see elitism for the first chromosomes 
and then forming new offspring by crossover and mutation until the new population is completed. 

Here is an applet, but your browser does not support Java. If you want to see applets, please check 
browser requirements. 
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VII. Parameters of GA 

Crossover and Mutation Probability 

There are two basic parameters of GA - crossover probability and mutation probability. 

Crossover probability: how often crossover will be performed. If there is no crossover, offspring are 
exact copies of parents. If there is crossover, offspring are made from parts of both parent's chromosome. 
If crossover probability is 100%, then all offspring are made by crossover. If it is 0%, whole new 
generation is made from exact copies of chromosomes from old population (but this does not mean that 
the new generation is the same!).
Crossover is made in hope that new chromosomes will contain good parts of old chromosomes and 
therefore the new chromosomes will be better. However, it is good to leave some part of old population 
survive to next generation. 

Mutation probability: how often parts of chromosome will be mutated. If there is no mutation, 
offspring are generated immediately after crossover (or directly copied) without any change. If mutation 
is performed, one or more parts of a chromosome are changed. If mutation probability is 100%, whole 
chromosome is changed, if it is 0%, nothing is changed.
Mutation generally prevents the GA from falling into local extremes. Mutation should not occur very 
often, because then GA will in fact change to random search. 

Other Parameters 

There are also some other parameters of GA. One another particularly important parameter is population 
size. 

Population size: how many chromosomes are in population (in one generation). If there are too few 
chromosomes, GA have few possibilities to perform crossover and only a small part of search space is 
explored. On the other hand, if there are too many chromosomes, GA slows down. Research shows that 
after some limit (which depends mainly on encoding and the problem) it is not useful to use very large 
populations because it does not solve the problem faster than moderate sized populations. 
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Some recommendations for all parameters can be found in one of the following chapters. 

Example
Here you can see example similar to previous one. But here you can try to change 
crossover and mutation probability. You can also control elitism.
On the graph below you can see performance of GA. Red is the best solution, blue is 
average value (fitness) of all population.
Try to change parameters and look how GA behaves. 

Here is applet, but your browser does not support Java. If you want to see applets, please check browser 
requirements. 

Question: If you try to increase mutation probability to 100%, GA will start to behave 
very strange, nearly like if the mutation probability is 0%. Do you know why? You can use 
a hint and if you still do not know, look at solution! 
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GA - 3D function

VIII. Extreme of a Function 

About the Problem 

The problem is again looking for the extreme of a function. However in this case one more dimension is 
added. 

Example 

Graph represents a search space and lines represent solutions (points in the search space). The red line 
is the best solution, blue lines are the other ones. 
You can enter your own function in a text field below graph (after change press enter or button Change). 
Below it you can define limits of function. Function can consist of x, y, pi, e, (, ), /, *, +, -, !, ^ and 
functions abs, acos, acosh, asin, asinh, atan, atanh, cos, cosh, ln, log, sin, sinh, sqr, sqrt, tan and tanh.
The graph can be rotated by dragging it with a mouse.
You can also change crossover and mutation probability. By checkboxes you can specify whether you 
want to use elitism and whether you look for minimum or maximum. 
Try to change the function and look how GA works. If you find some interesting function, where GA 
behaves very good or very strange, you can email it to me. 

Here is applet, but your browser does not support Java. If you want to see applets, please check browser 
requirements. 
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IX. Selection 

Introduction 

As you already know from the GA outline, chromosomes are selected from the population to be parents 
for crossover. The problem is how to select these chromosomes. According to Darwin's theory of 
evolution the best ones survive to create new offspring. There are many methods in selecting the best 
chromosomes. Examples are roulette wheel selection, Boltzman selection, tournament selection, rank 
selection, steady state selection and some others. 

Some of them will be described in this chapter. 

Roulette Wheel Selection 

Parents are selected according to their fitness. The better the chromosomes are, the more chances to be 
selected they have. Imagine a roulette wheel where all the chromosomes in the population are placed. 
The size of the section in the roulete wheel is proportional to the value of the fitness function of every 
chromosome - the bigger the value is, the larger the section is. See the following picture for an example. 

 

A marble is thrown in the roulette wheel and the chromosome where it stops is selected. Clearly, the 
chromosomes with bigger fitness value will be selected more times. 

This process can be described by the following algorithm. 
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1.  [Sum] Calculate the sum of all chromosome fitnesses in population - sum S. 
2.  [Select] Generate random number from the interval (0,S) - r. 
3.  [Loop] Go through the population and sum the fitnesses from 0 - sum s. When the sum s is 

greater then r, stop and return the chromosome where you are. 

Of course, the step 1 is performed only once for each population. 

Rank Selection 

The previous type of selection will have problems when they are big differences between the fitness 
values. For example, if the best chromosome fitness is 90% of the sum of all fitnesses then the other 
chromosomes will have very few chances to be selected. 

Rank selection ranks the population first and then every chromosome receives fitness value determined 
by this ranking. The worst will have the fitness 1, the second worst 2 etc. and the best will have fitness N 
(number of chromosomes in population). 

You can see in following picture, how the situation changes after changing fitness to the numbers 
determined by the ranking. 

 

Situation before ranking (graph of fitnesses) 

http://labe.felk.cvut.cz/~obitko/ga/selection.html (2 of 4) [6.4.2003 22:26:38]



Selection

 

Situation after ranking (graph of order numbers) 

Now all the chromosomes have a chance to be selected. However this method can lead to slower 
convergence, because the best chromosomes do not differ so much from other ones. 

Steady-State Selection 

This is not a particular method of selecting parents. The main idea of this type of selecting to the new 
population is that a big part of chromosomes can survive to next generation. 

The stady-state selection GA works in the following way. In every generation a few good (with higher 
fitness) chromosomes are selected for creating new offspring. Then some bad (with lower fitness) 
chromosomes are removed and the new offspring is placed in their place. The rest of population survives 
to new generation. 

Elitism 

The idea of the elitism has been already introduced. When creating a new population by crossover and 
mutation, we have a big chance, that we will loose the best chromosome. 

Elitism is the name of the method that first copies the best chromosome (or few best chromosomes) to 
the new population. The rest of the population is constructed in ways described above. Elitism can 
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rapidly increase the performance of GA, because it prevents a loss of the best found solution. 

              

(c) Marek Obitko, 1998 

http://labe.felk.cvut.cz/~obitko/ga/selection.html (4 of 4) [6.4.2003 22:26:38]



Encoding

X. Encoding 

Introduction 

Encoding of chromosomes is the first question to ask when starting to solve a problem with GA. 
Encoding depends on the problem heavily. 

In this chapter some encodings will be introduced that have been already used with some success.

Binary Encoding 

Binary encoding is the most common one, mainly because the first research of GA used this type of 
encoding and because of its relative simplicity. 

In binary encoding, every chromosome is a string of bits - 0 or 1. 

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

Example of chromosomes with binary encoding 

Binary encoding gives many possible chromosomes even with a small number of alleles. On the other 
hand, this encoding is often not natural for many problems and sometimes corrections must be made after 
crossover and/or mutation. 

Example of Problem: Knapsack problem
The problem: There are things with given value and size. The knapsack has given 
capacity. Select things to maximize the value of things in knapsack, but do not extend 
knapsack capacity.
Encoding: Each bit says, whether the corresponding thing is in knapsack.
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Permutation Encoding 

Permutation encoding can be used in ordering problems, such as travelling salesman problem or task 
ordering problem. 

In permutation encoding, every chromosome is a string of numbers that represent a position in a 
sequence. 

Chromosome A 1  5  3  2  6  4  7  9  8

Chromosome B 8  5  6  7  2  3  1  4  9

Example of chromosomes with permutation encoding 

Permutation encoding is useful for ordering problems. For some types of crossover and mutation 
corrections must be made to leave the chromosome consistent (i.e. have real sequence in it) for some 
problems. 

Example of Problem: Travelling salesman problem (TSP)
The problem: There are cities and given distances between them. Travelling salesman has 
to visit all of them, but he does not want to travel more than necessary. Find a sequence of 
cities with a minimal travelled distance. 
Encoding: Chromosome describes the order of cities, in which the salesman will visit 
them.

 

Value Encoding 

Direct value encoding can be used in problems where some more complicated values such as real 
numbers are used. Use of binary encoding for this type of problems would be difficult. 
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In the value encoding, every chromosome is a sequence of some values. Values can be anything 
connected to the problem, such as (real) numbers, chars or any objects. 

Chromosome A 1.2324  5.3243  0.4556  2.3293  2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Example of chromosomes with value encoding 

Value encoding is a good choice for some special problems. However, for this encoding it is often 
necessary to develop some new crossover and mutation specific for the problem. 

Example of Problem: Finding weights for a neural network
The problem: A neural network is given with defined architecture. Find weights between 
neurons in the neural network to get the desired output from the network.
Encoding: Real values in chromosomes represent weights in the neural network.

 

Tree Encoding 

Tree encoding is used mainly for evolving programs or expressions, i.e. for genetic programming. 

In the tree encoding every chromosome is a tree of some objects, such as functions or commands in 
programming language. 

Chromosome A Chromosome B
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( +  x  ( /  5  y ) ) ( do_until  step  wall )

Example of chromosomes with tree encoding 

Tree encoding is useful for evolving programs or any other structures that can be encoded in trees. 
Programing language LISP is often used for this purpose, since programs in LISP are represented directly 
in the form of tree and can be easily parsed as a tree, so the crossover and mutation can be done relatively 
easily. 

Example of Problem: Finding a function that would approximate given pairs of values
The problem: Input and output values are given. The task is to find a function that will 
give the best outputs (i.e. the closest to the wanted ones) for all inputs.
Encoding: Chromosome are functions represented in a tree.
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XI. Crossover and Mutation 

Introduction 

Crossover and mutation are two basic operators of GA. Performance of GA depends on them very much. The type 
and implementation of operators depends on the encoding and also on the problem. 

There are many ways how to perform crossover and mutation. In this chapter we briefly describe some examples 
and suggestions how to perform them several encoding.

Binary Encoding 

Crossover 

Single point crossover - one crossover point is selected, binary string from the beginning of the 
chromosome to the crossover point is copied from the first parent, the rest is copied from the other 
parent 

 

11001011+11011111 = 11001111 

Two point crossover - two crossover points are selected, binary string from the beginning of the 
chromosome to the first crossover point is copied from the first parent, the part from the first to the 
second crossover point is copied from the other parent and the rest is copied from the first parent 
again 

 

11001011 + 11011111 = 11011111 
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Uniform crossover - bits are randomly copied from the first or from the second parent 

 

11001011 + 11011101 = 11011111 

Arithmetic crossover - some arithmetic operation is performed to make a new offspring 

 

11001011 + 11011111 = 11001001 (AND) 

Mutation 

Bit inversion - selected bits are inverted 

 

11001001 =>  10001001 

Permutation Encoding 

Crossover 

Single point crossover - one crossover point is selected, the permutation is copied from the first 
parent till the crossover point, then the other parent is scanned and if the number is not yet in the 
offspring, it is added
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Note: there are more ways how to produce the rest after crossover point 

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7) 

Mutation 

Order changing - two numbers are selected and exchanged 

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7) 

Value Encoding 

Crossover 

All crossovers from binary encoding can be used 

Mutation 

Adding a small number (for real value encoding) - a small number is added to (or subtracted from) 
selected values 

(1.29  5.68  2.86  4.11  5.55) => (1.29  5.68  2.73  4.22  5.55) 

Tree Encoding 

Crossover 

Tree crossover - one crossover point is selected in both parents, parents are divided in that point 
and the parts below crossover points are exchanged to produce new offspring 
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Mutation 

Changing operator, number - selected nodes are changed 

              

(c) Marek Obitko, 1998 
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XII. Travelling Salesman Problem 

About the Problem 

Travelling salesman problem (TSP) has been already mentioned in one of the previous chapters. Just to 
remind, there are cities and given distances between them. Travelling salesman has to visit all of them, 
but he does not want to travel very much. The task is to find a sequence of cities to minimize travelled 
distance. In other words, find a minimal Hamiltonian tour in a complete graph of N nodes. 

Implementation 

Population of 16 chromosomes is used. For encoding these chromosomes permutation encoding is used - 
you can find in the chapter about encoding, how to encode permutation of cities for TSP. TSP is solved 
on complete graph (i.e. each node is connected to each other) with euclidian distances. Note that after 
adding and deleting city it is necessary to create new chromosomes and restart whole genetic algorithm. 

You can select crossover and mutation type. The description of their meaning follows: 

Crossover 

●     One point - part of the first parent (i.e. part of the cities order) is copied and the rest of cities is 
taken in the same order as in the second parent 

●     Two point - two parts of the first parent are copied and the rest between these two parts is taken in 
the same order as in the second parent 

●     None - no crossover, offspring is exact copy of parents 

Mutation 

●     Normal random - a few cities are chosen and exchanged 
●     Random, only improving - a few cities are randomly chosen and exchanged only if they improve 

solution (increase fitness) 
●     Systematic, only improving - cities are systematically chosen and exchanged only if they improve 

solution (increase fitness) 
●     Random improving - the same as "random, only improving", but before that the "normal random" 
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mutation is performed 
●     Systematic improving - the same as "systematic, only improving", but before that the "normal 

random" mutation is performed 
●     None - no mutation 

Example 

The following applet shows GA optimizing the TSP. Button "Change View" changes view from whole 
population to the best solution and vice versa. You can add and remove cities by clicking on the graph. 
After adding or deleting cities a random tour will appear between them as new population with new 
random chromosomes is created. Also note that we are solving TSP on complete graph.
Try to run GA with different types of crossover and mutation and note how the performance (and speed - 
add more cities to see it) of GA changes. 

Known bug: If you are using older versions of Java in Netscape, please press button "Change View" 
before doing anything else otherwise some graphs will not respond. 

Here is applet, but your browser does not support Java. If you want to see applets, please check browser 
requirements. 

              

(c) Marek Obitko, 1998 
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XIII. Recommendations 

Parameters of GA 

This chapter should give you some basic recommendations if you have decided to implement your 
genetic algorithm. These recommendations are very general. You will probably want to experiment with 
your own GA for a specific problem, because there is no general theory available that would help you to 
tune GA parameters for any problem. 

Recommendations are often results of empiric studies of GAs that were often performed on binary 
encoding only. 

●     Crossover rate
Crossover rate should be high generally, about 80%-95%. (However some results show that for 
some problems crossover rate about 60% is the best.) 

●     Mutation rate
On the other side, mutation rate should be very low. Best rates seems to be about 0.5%-1%. 

●     Population size
It may be surprising, that very big population size usually does not improve performance of GA 
(in the sense of speed of finding solution). Good population size is about 20-30, however 
sometimes sizes 50-100 are reported as the best. Some research also shows, that the best 
population size depends on the size of encoded string (chromosomes). It means that if you have 
chromosomes with 32 bits, the population should be higher than for chromosomes with 16 bits. 

●     Selection
Basic roulette wheel selection can be used, but sometimes rank selection can be better. Check the 
chapter about selection for advantages and disadvantages. There are also some more sophisticated 
methods that change parameters of selection during the run of GA. Basically, these behave 
similarly like simulated annealing. Elitism should be used for sure if you do not use other method 
for saving the best found solution. You can also try steady state selection. 

●     Encoding
Encoding depends on the problem and also on the size of instance of the problem. Check the 
chapter about encoding for some suggestions or look to other resources. 

●     Crossover and mutation type
Operators depend on the chosen encoding and on the problem. Check the chapter about operators 
for some suggestions. You can also check other sites. 
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Applications of GA 

Genetic algorithms have been used for difficult problems (such as NP-hard problems), for machine 
learning and also for evolving simple programs. They have been also used for some art, for evolving 
pictures and music. 

The advantage of GAs is in their parallelism. GA is travelling in a search space using more individuals 
(and with genotype rather than phenotype) so that they are less likely to get stuck in a local extreme like 
the other methods. 

They are also easy to implement. Once you have the basic GA algorithm implemented, you have just to 
write a new chromosome (just one object) to solve another problem. With the same encoding you just 
change the fitness function - and you are done. However, for some problems, choosing and 
implementation of encoding and fitness function can be difficult. 

The disadvantage of GAs is in the computational time. GAs can be slower than other methods. But sice 
we can terminate the computation in any time, the longer run is acceptable (especially with faster and 
faster computers). 

To get an idea about some problems solved by GAs, here is a short list of some applications:

●     Nonlinear dynamical systems - predicting, data analysis 
●     Designing neural networks, both architecture and weights 
●     Robot trajectory 
●     Evolving LISP programs (genetic programming) 
●     Strategy planning 
●     Finding shape of protein molecules 
●     TSP and sequence scheduling 
●     Functions for creating images 

More information can be found through links in the appendix. 

              

(c) Marek Obitko, 1998 
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Appendix: Other Resources 

Some selected links to web sites or ftps are listed here. You can use them for finding more information 
about genetic algorithms and concerning stuff. 

ENCORE, the EvolutioNary COmputation REpository network
ftp://alife.santafe.edu/pub/USER-AREA/EC/ (there are also some others nodes) 

FAQ - The Hitch-Hiker's Guide to Evolutionary Computation
ftp://alife.santafe.edu/pub/USER-AREA/EC/FAQ/www/index.html 

FAQ - Genetic programming
http://www-dept.cs.ucl.ac.uk/research/genprog/gp2faq/gp2faq.html 

The Genetic Algorithms Archive - many links, information about mailing list, some fun stuff
http://www.aic.nrl.navy.mil:80/galist/ 

Artificial Life Online - links, if you are looking for some introductory materials, look here
http://alife.santafe.edu/ 

Yahoo! Science:Computer Science:Algorithms:Genetic Algorithms - directory of other links
http://www.yahoo.com/Science/Computer_Science/Algorithms/Genetic_Algorithms/ 

Usenet groups comp.ai.genetic and comp.ai.alife 

Note: All links were checked at the time of creating. If you find any broken link, please inform me. 
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Browser Requirements 

For best viewing of these pages a browser with support of frames is recommended, as well as with 
support of JavaScript and Java 1.1 or higher (if you see errors instead of applets, your browser supports 
Java 1.0). Netscape Navigator from version 4.07 is recommended. You can also use Microsoft Internet 
Explorer 4.0 or higher, but the support of Java is strange in this browser (you may experience problems 
with redrawing and controlling applets). 
However, if you do not need to see Java Applets, any older browser (even without frames support) can be 
used.

 

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
Microsoft Internet Explorer is trademark of Microsoft Corporation.

Java is trademark of Sun Microsystems, Inc. 
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FAQ - Frequently Asked Questions 

Questions 

1. I would like to cite these pages, is there any paper I can refer to? 

2. Applets are not working, I see only errors. What shoud I do? 

3. I have a question concerning GA, can you help me with it? 

4. Can this site be downloaded as a single file? 

5. Will you create a site like this about neural networks? 

6. Will there be any translation of this site to other languages? 

7. Is there any statistics for this page? 

Answers 

1. Question: I would like to cite these pages, is there any paper I can refer to? 

Answer: If you want to cite a paper, use this reference: 

Obitko, Marek and Slavík, Pavel. Visualization of Genetic Algorithms in a 
Learning Environment. In: Spring Conference on Computer Graphics, 
SCCG'99. Bratislava : Comenius University, 1999, p. 101-106. ISBN 80-223-
1357-2. 

You may find the paper online here or here. Of course, you are free to link this site from 
anywhere you want and you may also refer to this site as to 

Marek Obitko: An introduction to genetic algorithms with Java applets, 
[URL of this site], 1998. 
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2. Question: Applets are not working, I see only errors. What shoud I do? 

Answer: First look at browser recommendations. 

You have probably browser with other version of Java than Java 1.1. Even some browsers, 
which have in description, that they support Java 1.1., really support Java 1.0 (without new 
event model). I suggest you upgrade your browser (sometimes is enough to change certain 
libraries). 

Sometimes this error is caused by error in class transmition. In this case try reload the class 
or simply try it again after some time. 

3. Question: I have a question concerning GA, can you help me with it? 

Answer: I am not currently active in the GA field, so I probably can't help you with e.g. 
finding up to date articles concerning some special problem. Try to find answer to your 
question by e.g. Google and if it doesn't help, you may try to send me your question. I will 
try to answer within a few days. I would also recommend asking in comp.ai.genetic - there 
you have bigger chance that your question will be answered. 

4. Question: Can this site be downloaded as a single file? 

Answer: Yes, as a zipped pdf file. Get the Acrobat Reader to read it. But of course, you 
will see no applets in this version. 

5. Question: Will you create a site like this about neural networks? 

Answer: I will try to find a time to do that. Meantime you can look at a page with one 
applet illustrationg prediction by means of backpropagation neural network. 
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6. Question: Will there be any translation of this site to other languages? 

Answer: There is a Japanese translation translated by Ishii Manabu and a Bulgarian 
translation translated by Teodor Gig. Other translations are welcomed - please contact me 
if you would like to make a translation. 

4. Question: Is there any access statistics for this page? 

Answer: Yes, some statistics is available here. 

 

(c) Marek Obitko, 1998 
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About These Pages 

About 

These pages were developed during August and September of 1998 at the Hochschule für Technik und 
Wirtschaft Dresden (FH) (University of Applied Sciences) by Marek Obitko, student of the Czech 
Technical University in Prague. 

The first version of the applets was written during summer semester of 1998 at the Czech Technical 
University, supervised by Assoc. Professor Pavel Slavík. During the stay in Dresden the project was 
supervised by Professor Walter Pätzold from the Hochschule für Technik und Wirtschaft Dresden. 

Pages and Java Applets were all created by Marek Obitko, (c) 1998. If you have any comments, 
questions or suggestions, you can send them to the author. 

 

Java is trademark of Sun Microsystems, Inc. 

(c) Marek Obitko (obitko@email.cz), 1998 
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About DNA

DNA
(Deoxyribonucleic acid) 

Here you can see some pictures to get an idea how the DNA structure looks like. Some basic information 
about the biological background is also available. 
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