
Introduction to

Genetic Algorithms

Guest speaker:

David Hales

www.davidhales.com



Genetic Algorithms - History

• Pioneered by John Holland in the 1970’s

• Got popular in the late 1980’s

• Based on ideas from Darwinian Evolution

• Can be used to solve a variety of problems
that are not easy to solve using other
techniques



Evolution in the real world
• Each cell of a living thing contains chromosomes - strings of
DNA

• Each chromosome contains a set of genes - blocks of DNA
• Each gene determines some aspect of the organism (like eye

colour)
• A collection of genes is sometimes called a genotype
• A collection of aspects (like eye colour) is sometimes called

a phenotype
• Reproduction involves recombination of genes from parents

and then small amounts of mutation (errors) in copying
• The fitness of an organism is how much it can reproduce

before it dies
• Evolution based on “survival of the fittest”



Start with a Dream…

• Suppose you have a problem

• You don’t know how to solve it

• What can you do?

• Can you use a computer to somehow find a
solution for you?

• This would be nice! Can it be done?



A dumb solution

A “blind generate and test” algorithm:

Repeat
Generate a random possible solution

Test the solution and see how good it is

Until solution is good enough



Can we use this dumb idea?

• Sometimes - yes:
– if there are only a few possible solutions
– and you have enough time
– then such a method could be used

• For most problems - no:
– many possible solutions
– with no time to try them all
– so this method can not be used



A “less-dumb” idea (GA)

Generate a set of random solutions

Repeat
Test each solution in the set (rank them)

Remove some bad solutions from set

Duplicate some good solutions

make small changes to some of them

Until best solution is good enough



How do you encode a solution?

• Obviously this depends on the problem!

• GA’s often encode solutions as fixed length
“bitstrings” (e.g. 101110, 111111, 000101)

• Each bit represents some aspect of the
proposed solution to the problem

• For GA’s to work, we need to be able to
“test” any string and get a “score” indicating
how “good” that solution is



Silly Example - Drilling for Oil

• Imagine you had to drill for oil somewhere
along a single 1km desert road

• Problem: choose the best place on the road
that produces the most oil per day

• We could represent each solution as a
position on the road

• Say, a whole number between [0..1000]



Where to drill for oil?

0 500 1000

Road

Solution2 = 900Solution1 = 300



Digging for Oil

• The set of all possible solutions [0..1000] is
called the search space or state space

• In this case it’s just one number but it could
be many numbers or symbols

• Often GA’s code numbers in binary
producing a bitstring representing a solution

• In our example we choose 10 bits which is
enough to represent 0..1000



Convert to binary string

11111111111023

0011010010300

0010000111900

1248163264128256512

In GA’s these encoded strings are sometimes called
“genotypes” or “chromosomes” and the individual bits are

sometimes called “genes”



Drilling for Oil

0 1000

Road

Solution2 = 900
(1110000100)

Solution1 = 300
(0100101100)

O
 I

 L

Location

30
5



Summary

We have seen how to:

• represent possible solutions as a number

• encoded a number into a binary string

• generate a score for each number given a function
of “how good” each solution is - this is often
called a fitness function

• Our silly oil example is really optimisation over a
function f(x) where we adapt the parameter x



Search Space

• For a simple function f(x) the search space is one
dimensional.

• But by encoding several values into the
chromosome many dimensions can be searched
e.g. two dimensions f(x,y)

• Search space an be visualised as a surface or
fitness landscape in which fitness dictates height

• Each possible genotype is a point in the space
• A GA tries to move the points to better places

(higher fitness) in the the space



Fitness landscapes



Search Space

• Obviously, the nature of the search space
dictates how a GA will perform

• A completely random space would be bad
for a GA

• Also GA’s can get stuck in local maxima if
search spaces contain lots of these

• Generally, spaces in which small
improvements get closer to the global
optimum are good



Back to the (GA) Algorithm
Generate a set of random solutions

Repeat
Test each solution in the set (rank them)

Remove some bad solutions from set

Duplicate some good solutions

make small changes to some of them

Until best solution is good enough



Adding Sex - Crossover

• Although it may work for simple search
spaces our algorithm is still very simple

• It relies on random mutation to find a good
solution

• It has been found that by introducing “sex”
into the algorithm better results are obtained

• This is done by selecting two parents during
reproduction and combining their genes to
produce offspring



Adding Sex - Crossover

• Two high scoring “parent” bit strings
(chromosomes) are selected and with some
probability (crossover rate) combined

• Producing two new offspring (bit strings)

• Each offspring may then be changed
randomly (mutation)



Selecting Parents

• Many schemes are possible so long as better
scoring chromosomes more likely selected

• Score is often termed the fitness
• “Roulette Wheel” selection can be used:

– Add up the fitness's of all chromosomes
– Generate a random number R in that range
– Select the first chromosome in the population

that - when all previous fitness’s are added -
gives you at least the value R



Example population

210111001118

101010101017

510010111116

300000100005

110100000004

310110011003

211111000012

110100110101

FitnessChromosomeNo.



Roulette Wheel Selection

1 2 3 1 3 5 1 2

0 18

21 3 4 5 6 7 8

Rnd[0..18] = 7

Chromosome4

Parent1

Rnd[0..18] = 12

Chromosome6

Parent2



Crossover - Recombination

1010000000

1001011111

Crossover
single point -

random

1011011111

1010000000

Parent1

Parent2

Offspring1

Offspring2

With some high probability (crossover
rate) apply crossover to the parents.
(typical values are 0.8 to 0.95)



Mutation

1011011111

1010000000

Offspring1

Offspring2

1011001111

1000000000

Offspring1

Offspring2

With some small probability (the mutation rate) flip
each bit in the offspring (typical values between 0.1

and 0.001)

mutate

Original offspring Mutated offspring



Back to the (GA) Algorithm

Generate a population of random chromosomes

Repeat (each generation)
Calculate fitness of each chromosome

Repeat

Use roulette selection to select pairs of parents

Generate offspring with crossover and mutation

Until a new population has been produced

Until best solution is good enough



Many Variants of GA

• Different kinds of selection (not roulette)
– Tournament
– Elitism, etc.

• Different recombination
– Multi-point crossover
– 3 way crossover etc.

• Different kinds of encoding other than bitstring
– Integer values
– Ordered set of symbols

• Different kinds of mutation



Many parameters to set

• Any GA implementation needs to decide on
a number of parameters: Population size
(N), mutation rate (m), crossover rate (c)

• Often these have to be “tuned” based on
results obtained - no general theory to
deduce good values

• Typical values might be: N = 50, m = 0.05,
c = 0.9



Why does crossover work?

• A lot of theory about this and some
controversy

• Holland introduced “Schema” theory
• The idea is that crossover preserves “good

bits” from different parents, combining
them to produce better solutions

• A good encoding scheme would therefore
try to preserve “good bits” during crossover
and mutation



Genetic Programming

• When the chromosome encodes an entire
program or function itself this is called
genetic programming (GP)

• In order to make this work encoding is often
done in the form of a tree representation

• Crossover entials swaping subtrees between
parents



Genetic Programming

It is possible to evolve whole programs like this
but only small ones. Large programs with complex
functions present big problems



Implicit fitness functions

• Most GA’s use explicit and static fitness
function (as in our “oil” example)

• Some GA’s (such as in Artificial Life or
Evolutionary Robotics) use dynamic and
implicit fitness functions - like “how many
obstacles did I avoid”

• In these latter examples other chromosomes
(robots) effect the fitness function



Problem

• In the Travelling Salesman Problem (TSP) a
salesman has to find the shortest distance journey
that visits a set of cities

• Assume we know the distance between each city
• This is known to be a hard problem to solve

because the number of possible routes is N! where
N = the number of cities

• There is no simple algorithm that gives the best
answer quickly



Problem

• Design a chromosome encoding, a mutation
operation and a crossover function for the
Travelling Salesman Problem (TSP)

• Assume number of cities N = 10
• After all operations the produced chromosomes

should always represent valid possible journeys
(visit each city once only)

• There is no single answer to this, many different
schemes have been used previously


