Socially Inspired Computing

Engineering with Social Metaphors



Cluster of Areas in SIC

Social Simulation

Evolutionary Computing

Evolutionary Economics / Game Theory
Artificial Life

Artificial Societies



Emphasis

Understanding

Scientific / experimental

General / abstract

Interpretation of model key
Computational simulation
Emergence, Self-organisation
Evolution, Decentralised, Scaling



Engineering

Specified functions

Known goals

Technical constrains

Practical implementation issues
Top down, centralised, poor scaling
Closed, Secure

Fixed, non-adaptive



New Trend: Self-* Engineering

« Self-Organising, Self-Managing
» Self-Repairing, Self-Reoganising
 Emergent Function

» Decentralised, Open

» High Scalability

» Light Overheads



Basic Question

Self-* has draw on biological inspiration

But many Self-* problems look like
sociological problems

Can Self-* learn from socially inspired work?
Can SIC learn from Self-* ?



Invited Speakers

* Next:
— Mark Jelasity (Bologna)

» After Lunch (14:55):
— Giovana Di Marzo Serugendo (Geneva)



Engineering with Sociological
Metaphors:
Examples and Prospects

www.davidhales.com
University of Bologna

This work is partially supported by the European
Commission under the DELIS project



Background

* Many Self-* engineering issues can be
thought of sociological questions:
— Cooperation in open systems
— Emergent social structures
— Scalability, distributed implementation
— Robustness



Examples - BitTorrent

BitTorrent system:
— P2P file sharing peer software
— Tens of millions of users
— Estimate 35% internet traffic

— Inspired by the tit-for-tat strategy
popularised by political scientist Robert
Axelrod (80’s) in PD tournaments

— WWI fraternisation over the trenches



Tit-for-Tat Strategy

Start by cooperating

Then copy behaviour of opponent in
pervious interaction

Hence, punish bad guys in the future
Requires repeated interactions



Example - SLAC

SLAC algorithm:
— Applying “tags” within a p2p network

— Translating an “evolutionary algorithm” into a
network: replication and rewiring

— Simulation of file sharing scenario

— Inspired by tag-based cooperation models (old
school tie effect) Holland/Axelrod/Riolo PD

— Works in one-time interactions



SLAC Algorithm

* Periodically each node:

— Compares it's performance (utility) with a
randomly chosen other node

— If other node has higher utility, copy that
nodes view and behaviour

— Mutate (add noise with low probability) to
view and behaviour



Before

\ ‘@é‘%

Fu> A,

Where A, = average
utility of node A

A copies F
After neighbours &
strategy

bsoRe
..

In this case mutation has
not changed anything



Before

After

Mutation applied to F’s F is wired to a randomly
neighbourhood selected node (B)




Prospects - Specialisation

SLAC works for producing simple cooperation
in PD and a file-sharing scenario

It can also be applied to produce clusters of
nodes with internal division of labour

Previous tag models interpreted as “foraging
tribes — harvesting resources”

Can be translated into “nodes and jobs”



Agents with : _
matching tags | The passing agent Resources awarded
share a N Incurs a cost may be passed on to an
boundary N agent with appropriate
W~ T T T skill or discarded

X

Resources are
marked with a
required skill
number

; Numbers
\ e represent agent
S -~ skills



7

Nodes form functional
clusters with internal
specialisation

Numbers Jobs generated periodically

represent node at various nodes
resources



Prospects — power in p2p

* Many social simulation work with
evolving social networks

 Some demonstrate the emergence of
hierarchy and power

» Both may be useful for many
engineering problems in p2p






Engineering with Social Metaphors
Discussion

Is any of this really engineering?

Are we really making use of social
metaphors or is the link tenuous?

Can general methods be developed to
import techniques?

How are mutation, replication, strategy
and fithess concepts translated into
deployable systems?



