This work is partially supported by the European Commission under the DELIS project

www.davidhales.com

David Hales University of Bologna A long time ago... back in the 20th century...

I made a silly mistake and wrote a very very complicated agent-based computer model without a clear aim of what I was trying to do

I wasn't sure what to put into the model and what to leave out so I put almost everything in and parameterised the key assumptions (magic numbers) of the model

Then I realised it was so big and complex that I didn't really know how to explore the model to find interesting phenomena

This is the story of how I pulled myself out of this hole!

Aims of the talk

- Overview a quite complicated agent based model (the stereolab)
- Discuss some methods used to explored the parameter space
- Identify the outcomes of the analysis

Stereotyping

- In large human societies people have to interact with strangers all the time
- Cooperation and trust within such interactions is often required
- But with no information concerning another, how can a decision be made?

Stereotyping

- People sometimes rely on gross stereotyping based on observable characteristics
- Sometimes this might make sense but often it appears to be arbitrary
- We want to explore this kind of process abstractly

Stereotyping - assumptions

- In large complex societies stereotyping allows for "cognitive economy" simplifying the social world
- Often stereotypes are received from others via communication
- Can be generalised, specialised or otherwise changed by individuals

Stereotyping - questions

- If agents are sharing and creating "stereotypes" in a "memetic" way...
- Under what conditions (if any) can this promote cooperation
- What mechanisms produce this cooperation

The StereoLab model

- Agent based computer simulation
- 100 satisficing agents, live on a 1D ring
- Discreet locations on the ring
- Interact culturally (memetic) and economically (PD game) with neighbors
- Many aspects of model parameterised

The StereoLab

- Agents store, communicate and mutate two kinds of meme
- Observable tags and behavioral rules
- The rules are stereotypes indicating how cooperative an agent should be with other agents based on generalisations over tags

	Description	Rng
В	Number of bits in tag string	48
М	No. stereotypes agent s tores (mem. size)	210
S	Number of locations in env ironment	101
Ν	Number of agents in the soc iety	101
Т	Satisfaction threshold	3
PM	Probability of meme propag ation	01
Р	Probability of satisfaction test	1
MT	Mutation rate	01
CI	Factor by which t o increase conf idence	01
CR	Factor by which to decrease conf idence	01
MS	Mutation size for strategy parts	01
FG	Prob. of game -interaction in a time unit	01
FC	Prob. of cultural interaction in time unit	01
FM	Prob. of rand. agent movement in time unit	01
BF	Proportion of tag bits that are fixed	01
BG	Req. prop of tag shared for game -interac.	01
BC	Req. prop. of tag shared for cultInterac	01
TG	No. refusals before forced game -interac.	110
TC	No. refusals before forced cultur al-intera c.	110
VC	Size of cultural interaction window	01
VG	Size of game -interaction window	01
PP	The P payoff from the PD matrix	1
PT	The T payoff from the PD matrix	5
PR	The R payoff from the PD matrix	3
PS	The S payoff from the PD matrix	0
PP	The P payoff from the PD matrix	1
PT	The T payoff from the PD matrix	5
PR	The R payoff from the PD matrix	3
PS	The S payoff from the PD matrix	0

A random sample

Proportion of CC in last cycle

Exploration with C4.5

- C4.5 is a decision tree induction algorithm
- Feed in parameter values (input vector) and output categories (e.g. high or nonhigh cooperation) for each run
- C4.5 recursively splits the input vector based on information gain in the output category

Region found

- MT > 0, CR > 0, VG = 0, FM <= 0.1
- 150 points, 80% high cooperation
- Meme mutation is non-zero
- Agents reduce confidence in their memes if they are not satisfied
- Game-interaction limited to a single territory
- The frequency of agent movement between territories is low.

Region Found

- MT>0, CR>0, VG >0, PM >0.4, FG<=0.1, FC>0.1
- 284 points, 44% "high cooperation"
- Meme mutation is non-zero
- Agents reduce confidence in their memes if they are not satisfied
- Game-interaction NOT limited to a single territory
- Cultural interaction events are, at least, one order of magnitude more frequent than game-interaction events.

Hill-climbing & cluster analysis

- 100 random points
- Local hill-climb for 100 steps
- Search for global maximum 100% cooperation
- 39 points found
- Cluster those points using k-means method

Clusters

- Cooperation high when game-interaction is limited to single territory (as before)
- Cooperation high when BG and TG were high and BF was low - biasing of game-interaction towards those sharing similar tag bits is high and the low value for BF indicates that the majority of tag bits are culturally learned
- What process produces high cooperation from such biasing?

The tag process (again)

- Tags combined with biasing create "gameinteraction groups" sharing the same tags
- Cultural learning can change tags
- Hence agents "move" between tag groups
- Unsatisfied agents change tags (hence groups)
- Groups satisfying their members (via cooperation) tend to stabilise and recruit
- Groups that do not satisfy tend to dissipate
- Hence cooperation is promoted

The "tag" process is general

- Single round PD (economics / biology)
- Generalised exchange (sociology)
- Self-organising networks (engineering)
- Symbiosis / specialisation (biology)
- Swarming attack drones (military)

Conclusions

- Large parameter spaces can be explored using semi-automated methods (C4.5 & hill-climb + clustering)
- Regions of interest can be located and examined
- From these specific runs general mechanisms / processes can be identified (hand-waving, black art)
- Exported to a number of disciplines by applying it to their "pet" problems