

QLectives Deliverable D2.1.2

QLectives – Socially Intelligent Systems for Quality
Project no. 231200

Instrument: Large-scale integrating project (IP)
Programme: FP7-ICT

Deliverable D2.1.2
Fundamental algorithms for sustaining cooperation in

realistic environments

Submission date: 2011-03-01

Start date of project: 2009-03-01 Duration: 48 months

Organisation name of lead contractor for this deliverable: TUD

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination level
PU Public X
PP Restricted to other programme participants (including the Commission Ser-

vices)
RE Restricted to a group specified by the consortium (including the Commis-

sion Services)
CO Confidential, only for members of the consortium (including the Commis-

sion Services)

QLectives Deliverable D2.1.2

Document information

1.1 Author(s)

Author Organisation E-mail
David Hales TUD dave@davidhales.com

1.2 Other contributors

Name Organisation E-mail
Rameez Rahman TUD rrameez@gmail.com
Rahim Delaviz TUD rahim.delaviz@gmail.com
Adele Jia TUD adele.lu.jia@gmail.com
Nazareno Andrade TUD nazareno@gmail.com
Tamás Vinkó TUD T.Vinko@tudelft.nl
Lucia D’Acunto TUD L.dAcunto@tudelft.nl
Michel Meulpolder TUD meulpolder@gmail.com
Dick Epema TUD D.H.J.Epema@tudelft.nl
Henk Sips TUD H.J.Sips@tudelft.nl
Johan Pouwelse TUD peer2peer@gmail.com
Nigel Gilbert UniS n.gilbert@surrey.ac.uk

1.3 Document history

Version# Date Change
V0.1 20-12-2010 First draft internal consortium version
V0.2 14-12-2010 Minor corrections and clarifications
V1.0 date Approved version to be submitted to EU

1.4 Document data

Keyworlds QLectives, peer-to-peer, BitTorrent, reciprocity, indirect
reciprocity, inequality, evolution

Editor address data David Hales
Delivery date DD MM, YY

1.5 Distribution list

QLectives Deliverable D2.1.2

Date Issue E-mail
Consortium members QLECTIVES@list.surrey.ac.uk
Project officer Jose.FERNANDEZ-

VILLACANAS@ec.europa.eu
EC archive INFSO-ICT-231200@ec.europa.eu

QLectives Deliverable D2.1.2

QLectives Consortium
This document is part of a research project funded by the ICT Programme of the
Commission of the European Communities as grant number ICT-2009-231200.

University of Surrey (Coordinator) University of Fribourg
Department of Sociology/Centre Department of Physics
for Research in Social Simulation Fribourg 1700
Guildford GU2 7XH Switzerland
Surrey Contact person: Prof. Yi-Cheng Zhang
United Kingdom E-mail: yi-cheng.zhang@unifr.ch
Contact person: Prof. Nigel Gilbert
E-mail: n.gilbert@surrey.ac.uk

Technical University of Delft University of Warsaw
Department of Software Technology Faculty of Psychology
Delft, 2628 CN Warsaw 00927
Netherlands Poland
Contact Person: Dr Johan Pouwelse Contact Person: Prof. Andrzej Nowak
E-mail: j.a.pouwelse@tudelft.nl E-mail: nowak@fau.edu

ETH Zurich Centre National de la Recherche
Chair of Sociology, in particular Scientifique, CNRS
Modelling and Simulation Paris 75006,
Zurich, CH-8092 France
Switzerland Contact person: Dr. Camille ROTH
Contact person: Prof. Dirk Helbing E-mail: camille.roth@polytechnique.edu
E-mail: dhelbing@ethz.ch

University of Szeged Institut für Rundfunktechnik GmbH
MTA-SZTE Research Group on Munich 80939
Artificial Intelligence Germany
Szeged 6720, Hungary Contact person: Dr. Christoph Dosch
Contact person: Dr Mark Jelasity E-mail: dosch@irt.de
E-mail: jelasity@inf.u-szeged.hu

QLectives Deliverable D2.1.2

QLectives introduction
QLectives is a project bringing together top social modelers, peer-to-peer en-

gineers and physicists to design and deploy next generation self-organising so-
cially intelligent information systems. The project aims to combine three recent
trends within information systems:

• Social networks - in which people link to others over the Internet to gain
value and facilitate collaboration

• Peer production - in which people collectively produce informational prod-
ucts and experiences without traditional hierarchies or market incentives

• Peer-to-Peer systems - in which software clients running on user machines
distribute media and other information without a central server or admin-
istrative control

QLectives aims to bring these together to form Quality Collectives, i.e. func-
tional decentralised communities that self-organise and self-maintain for the ben-
efit of the people who comprise them. We aim to generate theory at the social
level, design algorithms and deploy prototypes targeted towards two applica-
tion domains:

• QMedia - an interactive peer-to-peer media distribution system (including
live streaming), providing fully distributed social filtering and recommen-
dation for quality

• QScience - a distributed platform for scientists allowing them to locate
or form new communities and quality reviewing mechanisms, which are
transparent and promote quality

The approach of the QLectives project is unique in that it brings together
a highly inter-disciplinary team applied to specific real world problems. The
project applies a scientific approach to research by formulating theories, apply-
ing them to real systems and then performing detailed measurements of system
and user behaviour to validate or modify our theories if necessary. The two ap-
plications will be based on two existing user communities comprising several
thousand people - so-called ”Living labs”, media sharing community tribler.org;
and the scientific collaboration forum EconoPhysics.

Executive summary

The aim of this deliverable is to identify and translate theoretical models of co-
operation formation into algorithms for ICT systems. We draw on the review
of models from deliverable D1.1.1, and the proposed applications of those mod-
els given in D2.1.1. We have focused on the QMedia application domain in this
phase of QLectives work and particularly BitTorrent related issues. The main
contributions of this deliverable are:

• Summarise published work which examines potential improvements to a
deployed distributed indirect reciprocity mechanism - chapter 1.
• Give an overview of on-going work which applies an evolutionary inspired

tournament approach to automatically assess the quality of a space of BitTorrent-
like sharing protocols - chapter 2.
• Summarise published work which presents a detailed analysis of the re-

lationship between performance and equality within the direct reciprocity
mechanism of BitTorrent - chapter 3

We do not discuss here the implementation of the Channel concept within
Tribler (as discussed in the previous deliverable D2.1.1) since this is now an im-
plementation issue and is discussed in deliverable D4.3.2. In addition the Barter-
Cast II implementation, influenced by the work presented in chapter 1, is also
discussed in D4.3.2.

QLectives Deliverable D2.1.2

Contents

1 Improving Accuracy and Coverage in an Internet-Deployed Reputation
Mechanism 1
1.1 Introduction . 1
1.2 The BarterCast Reputation Mechanism 2
1.3 The Crawler and Proposed Modifications 5
1.4 Experimental Setup and Results . 8
1.5 Summary . 9

2 Evolutionary Inspired Distributed Algorithmic Mechanism Design 13
2.1 Introduction . 13
2.2 A Space of P2P Protocols . 16
2.3 The PRA Analysis Approach . 17
2.4 BitTorrent Protocol Space - Some Initial Results 18
2.5 Summary . 18

3 BitTorrent’s Dilemma: Enhancing Reciprocity or Reducing Inequity 21
3.1 Introduction . 21
3.2 A Fluid Model for BitTorrent . 22
3.3 Analysis of Four Strategies . 26
3.4 Related Work . 31
3.5 Summary . 33

4 Summary and further research questions 35

QLectives Deliverable D2.1.2

Chapter 1

Improving Accuracy and Coverage in
an Internet-Deployed Reputation
Mechanism

In this section we give a brief overview of results assessing the accuracy and cov-
erage of proposed modifications to the currently deployed distributed indirect
reciprocity (reputation) system in Tribler - called BarterCast. Full results and de-
tailed explanations can be found in the associated published paper of which this
chapter is a summary only [9].

1.1 Introduction

P2P systems can benefit from reputation mechanisms through which peers evaluate
the reputations of the participants of the system and are therefore able to iden-
tify good service providers. Two central properties of a reputation mechanism
are its accuracy, that is, how well a peer can approximate ”objective” reputation
values when calculating the reputation of other peers, and its coverage, that is,
the fraction of peers for which an interested peer is able to compute reputation
values. Inaccurate or partial reputation evaluation may lead to misjudgment,
poor behavior, and finally, system degradation. The BarterCast mechanism [21] is
an Internet-deployed reputation mechanism that is used by the Tribler Bittorent-
based file-sharing client [23] to select good bartering partners and to prevent free-
riding. In this paper we evaluate the accuracy and the coverage of BarterCast,
propose three modifications to this mechanism, and evaluate these modifications
with respect to accuracy and coverage. The evaluation is performed using empir-
ical data collected by crawling the Tribler P2P network over a 3-month period.

P2P file-sharing systems are characterized by large populations and high turn-
over. In such setting, two participants interacting will often have no previous ex-
perience with each other, and will be thus unable to estimate each others’ behav-
ior in the system. If choosing among potential interaction partners is important,
such configuration is an issue. The fundamental idea behind a reputation mecha-

1

QLectives Deliverable D2.1.2

nism is that individual behavior does not usually change radically over time, and
past activity is a good predictor of future actions [26]. Using this idea, a reputa-
tion mechanism collects information on the past behavior of the participants in a
system and quantifies these information into reputation values. In a distributed
reputation mechanism, depending on how the information about peers’ behav-
ior are disseminated or how the reputation values are computed, each participant
may have different reputation values for the same participants.

We have previously designed and implemented the BarterCast reputation
mechanism in our Bittorent-based P2P client Tribler. In BarterCast, peers ex-
change messages about their upload and download actions, and use the collected
information to calculate reputations. From the BarterCast messages it receives,
each peer builds a local weighted, directed graph with nodes representing peers
and with edges representing amounts of transferred data. This subjective graph
is then used by each peer to calculate the reputation values of other peers by
applying the maxflow algorithm to the graph, interpreting the edge weights as
“flows.”

In this paper we propose three modifications to the BarterCast reputation
mechanism, and we evaluate the accuracy and the coverage of the original Barter-
Cast reputation mechanism and of all combination of these three modifications.
First, rather than have each peer execute the maxflow algorithm to compute rep-
utations from its own perspective, we make each peer do so from the perspective
of the node with the highest betweenness centrality [13] in its subjective graph. The
second modification consists in using a gossiping protocol that fully disseminates
the BarterCast records in the whole system rather than limiting the exchange of
these records to one hop. In the third modification we increase the maximal path
length in the maxflow algorithm to 4 or 6 instead of 2 as in the original Barter-
Cast. In order to evaluate the original BarterCast reputation mechanism and our
three modifications, we have crawled the Tribler P2P system for 83 days to obtain
as many BarterCast records of the Tribler peers as possible. From the records ob-
tained from each peer, we emulate its reputation computations by reconstructing
its subjective view, represented by the subjective graph of the peer (in this paper
the terms subjective graph and subjective view are synonyms). We then use this
graph to execute the maxflow algorithm with and without modifications.

In the rest of the paper, we first explain the BarterCast mechanism in detail
and we define the metrics accuracy and coverage. In Section 1.3, we explain
the crawler and the data collecting process, and we describe the collected data.
In Section 1.3, we state the problem with the current version of BarterCast and
explain the modifications we propose. In Section 1.4, first we explain the experi-
mental setup and then the experimental results are presented.

1.2 The BarterCast Reputation Mechanism

In this section, we first explain the BarterCast mechanism in detail and then we
formulate the metrics accuracy and coverage in this mechanism.

2

QLectives Deliverable D2.1.2

1.2.1 The BarterCast Mechanism

The BarterCast mechanism is used by the Tribler Bittorent client to rank peers
according to their upload and download behavior. In this mechanism, a peer
whose upload is much higher than its download gets a high reputation, and other
peers give a high priority to it when selecting a bartering partner. In BarterCast,
when two peers exchange content, they both log the amount of transferred data
and the identity of the exchange partner in a BarterCast record; these records
store the total cumulative amounts of data transferred in both directions since
the first data exchange between the peers. In BarterCast, each peer regularly
contacts other peers in order to exchange BarterCast records. Peer sampling for
selecting to whom to send BarterCast records is done through a gossip protocol
called BuddyCast, which is at the basis of Tribler. In BuddyCast, peers regularly
contact each other in order to exchange lists of known peers and content.

Using the BarterCast message exchange mechanism, each peer creates its own
current local view of the upload and download activity in the system. Formally,
the receiver of BarterCast records creates and gradually expands its subjective
graph. The subjective graph of peer i is Gi = (Vi, E, ω), where Vi is the set of
nodes representing the peers about whose activity i has heard through Barter-
Cast records, and E is the set of weighted directed edges (u, v, w), with u and
v ∈ Vi and w the total amount of data transferred from u to v. Upon reception of
a BarterCast record (u, v, w), peer i either adds (a) new node(s) and a new edge
to its subjective graph if it did not know u and/or v, or only (a) new directed
edge(s) if it did know u and v but did not know about the data transfer activity
between them, or adapts the weight(s) of the existing edge(s) between u and v.
If peer i receives two BarterCast records with the same sender u and the same
receiver v from different peers, it keeps the record that indicates lower amounts
of data transferred in order to avoid invalid reports from malicious peers that try
to inflate their uploads. Furthermore, the direct experience of the peer has higher
priority than received reports from others.

In order to calculate the reputation of an arbitrary peer j ∈ Vi at some time,
peer i applies the maxflow algorithm [31] to its current subjective graph to find
the maximal flow from itself to j and vice versa. Maxflow is a classic algorithm
in graph theory for finding the maximal flow from a source node to a destination
node in a weighted graph. When applying maxflow to the subjective graph, we
interpret the weights of the edges, which represent amounts of data transferred,
as flows. The original maxflow algorithm by Ford-Fulkerson [31] tries all possi-
ble paths from the source to the destination, but in BarterCast, in order to limit
the computation overhead, only paths of length at most 2 are considered. The
rationale for expecting that this limit is sufficient is that the majority of peers may
have indirect relationships through popular intermediaries [22], in which case
using two hops in maxflow provides sufficient data for the evaluation of reputa-
tions. Using the values F2(., .) as computed with the 2-hops maxflow algorithm,

3

QLectives Deliverable D2.1.2

the subjective reputation of peer j from peer i’s point of view is calculated as:

Sij =
arctan(F2(j, i)− F2(i, j))

π/2
, (1.1)

and so Sij ∈ [−1,+1]. If the destination node j is more than two hops away from
i, then its reputation is set to 0.

In Figure 1.1 a simple subjective graph is shown in which peer i as the owner
of the graph evaluates the reputation of peer j. In this graph, F2(i, j) = 11 and
F2(j, i) = 5, and so Ri(j) = −0.89.

Figure 1.1: A sample subjective graph.

Using a flow algorithm (e.g., maxflow in BarterCast) is like doing a collabora-
tive inference where the knowledge of all involved nodes is included in the com-
putation of the final value. Beside this, flow algorithms like maxflow are more
resilient against sybil attacks - in which a single peer uses multiple identities to
boost it’s reputation - than trivial operations like averaging or summation are
not [7]. The BarterCast mechanism can be generalized in the form of flow-based
mechanisms. Such mechanisms have two common features. First, the relation
between participants is shown as a graph. Second, there is a function φ which
calculates the flow of a specified metric from a node set I to a destination node
set J , and the obtained flow is used to calculate the final reputation value.

1.2.2 Accuracy and Coverage

As the term accuracy indicates, it is a measure of how close an estimated repu-
tation value is to an ”objective” or real value. In a distributed mechanism like
BarterCast, depending on how the feedback records are disseminated, peers may
have different opinions about the reputation of a peer at the same time. Each peer
also at each point in time has an objective reputation value, Oj , that is calculable
only if the evaluator peer has a global view of the activity of all peers. In our case,
only the crawler has such a view and using the collected data we can calculate
the objective reputations. If Uj and Dj are the total upload and download by peer
j, then its objective reputation is

Oj =
arctan(Uj −Dj)

π/2
(1.2)

4

QLectives Deliverable D2.1.2

Using the objective and subjective reputations, the estimation error is defined as
the absolute value of the difference between the subjective and objective values:

e(i, j) = abs(Sij −Oj) (1.3)

Higher estimation errors mean lower accuracy and vice versa.
Coverage is another important metric that expresses how well a node is lo-

cated and can reach other nodes in the graph. Denoting by Fh(., .) the maximum
flow computed with the maxflow algorithm using all paths of length less than or
equal to h, in the subjective graph G the h-hop coverage of node i is defined as

cG(i, h) = |{u|Fh(i, u) > 0 or Fh(u, i) > 0}| (1.4)

So the coverage of node i in a graph is the number of nodes at a distance at most h
from node i with non-zero maximum flow to or from i. Dividing the coverage by
the number of nodes normalizes it into the interval of [0, 1] and makes it possible
to compare this metric in graphs of different size.

1.2.3 Related Work

The BarterCast mechanism was designed by Meulpolder et al. to distinguish free-
riders and cooperative peers in file-sharing environments. After the first release,
Seuken et al. [27] proposed an improvement to make it more resilient against
misreporting attacks. Their solution is based on ignoring some of the feedback
reports. Also, this solution could cut down the severity of the attack, but on
the other hand it increases the feedback sparsity. Xiong et al. [32] show that
the feedback sparsity is an issue in large distributed systems, and that a lack of
enough feedback can lead to lower accuracy and coverage.

Besides BarterCast, several other distributed reputation mechanisms have been
proposed for P2P systems, but they use different methods to calculate reputation
values. EigenTrust [16] is based on summation of direct observations and indirect
data and uses centralized matrix operations to compute the left eigen vector. The
CORE system [6] uses arithmetic weighted averaging on historical data to calculate
reputation values. The BarterCast mechanism best fits in a class of mechanisms
which use flow-based reputation functions as defined by Cheng et al. [7].

1.3 The Crawler and Proposed Modifications

To collect the required dataset consisting of the BarterCast records of all (or at
least, many) Tribler peers for analysis, we have crawled the Tribler network for 83
days, from June 20 until September 9, 2009. Except for some slight differences, the
crawler works as an ordinary Tribler client. Discovery of the new peers is done
through the BuddyCast protocol, which is the gossiping engine of the Tribler
client. When a new peer is discovered with this protocol, it is added to a list.
The crawler hourly contacts all peers in this list and asks them for their latest

5

QLectives Deliverable D2.1.2

BarterCast records by including the timestamp of the latest record it does have of
each peer. Using the BarterCast records received by the crawler from each peer,
we can reconstruct the subjective graph of that peer in the same way the peer
builds it.

The discovered peers have different ages, some of them having been installed
and running for months and others just for a few days or even hours. So, when
the crawler asks a peer for BarterCast records for the first time, it might receive
very old records that are useless because they correspond to peers that were on-
line in the past but no longer participate in the system. To mitigate this problem,
when the crawler contacts a peer for the first time, it uses the start time of the
crawl, that is, 00:00 hours on June 20, 2009, so that the discovered peers will only
include BarterCast records fresher than the crawl start time in their replies.

Another problem in doing the crawling is the size of the reply messages. If
a peer is asked for all its records at once, the reply message might be large and
sending it may be problematic. To prevent this intrusive effect in the crawling, in
each contact, peers are only asked for 50 records that they have not sent already.
Because of a potentially high churn rate, this limitation causes a side effect and
for some of the peers that go offline the crawler is unable to fetch all their records.
To have a reliable analysis, such incomplete views should be removed. Because in
each contact a peer is limited to send at most 50 records, it is probable that, having
a multiple of 50 records from a peer means that it has not sent all its records. As
a consequence, to filter out incomplete views, all views of the size of a multiple
of 50 are removed.

To be able to sort the collected records and to account for the time difference
with remote peers, the crawler asks peers to send their local time as well. When
the crawler receives such information, it logs the remote peer’s time and its own
local time. Using these two times and the timestamp of the record (available in
the record payload) the collected records can be sorted. If tp and tc denote the
local time of the remote peer and the crawler, respectively, and tr is the record
timestamp, then the relative record occurrence time is:

tc − tp + tr (1.5)

This relative time is used in the experiments to sort the BarterCast records.
During the crawling period, the crawler collected 547,761 BarterCast records

from 2,675 different peers. After filtering out the incomplete views, 416,061 records
were left, collected from 1,442 peers, which means that although 46% of the views
are incomplete, they contain only 24% of the collected records. All the subsequent
processing and analysis in this paper is based only on complete views.

An analysis of the collected data set shows that the accuracy and the cover-
age of the current BarterCast mechanism are low and need to be improved. The
mean of the estimation error is 0.664, which is the same as the average differ-
ence between two random values in the interval of possible reputation values,
[−1,+1]. This means that a random guess for the subjective reputation value has
the same precision as using the BarterCast mechanism. Similarly, the coverage of

6

QLectives Deliverable D2.1.2

the BarterCast mechanism is very low at 0.032. In order to remedy this situation,
we propose the following three modifications to the BarterCast mechanism.

1.3.1 Modification 1: Using Betweenness Centrality

Betweenness centrality was introduced by Freeman [13] as a measure of the num-
ber of shortest paths passing through a node. In a graph G = (V,E), if δst is the
number of shortest paths between two arbitrary nodes s, t of G, and δst(v) is
the number of these paths that pass through node v, then the betweenness cen-
trality of node v is β(v) =

∑
s 6=v 6=t

δst(v)
δst

. A higher betweenness centrality means
a higher participation of the node in connecting other nodes, and also a higher
flow that passes through it. Another feature of this measure is that in contrast to
connectivity (the sum of in and out degrees of a node), which is a local quantity,
betweenness centrality is a quantity across the whole graph; nodes with many
connections may have a low betweenness centrality and vice versa [5]. Between-
ness centrality has been used in the analysis of various topics, like transportation,
social networks, and biological networks, but to the best of our knowledge it has
not been used in reputation systems.

In the original BarterCast mechanism, a peer i as the owner of the subjective
graph Gi, in evaluating the reputation of peer j, runs the maxflow algorithm to
compute the maximum flow from itself to j and from j to itself. In the proposed
modification, first, node i finds the node with the highest betweenness centrality
in Gi, and then replaces itself with that node in the maxflow execution. By this
change, the evaluator peer benefits from the centrality feature of the central node
and uses the collected data in a better way.

1.3.2 Modification 2: Using Full Gossip

The second modification is obtained by changing the way BarterCast records are
disseminated. In the original version, peers only use 1-hop message passing and
they are not allowed to forward the received records. Peers only report their own
download and upload activities to the peers that are discovered by the Buddy-
Cast protocol. This method limits the effect of misreporting but it is not efficient
in spreading the BarterCast records. Specially if a peer goes offline, its upload
and download activity are not disseminated, and when it comes online again,
very few peers know about its activities. In this modification, instead of using 1-
hop message passing, we assume that there is a full gossiping protocol that spreads
records without the hop limitation, so that in principle all online peers eventually
receive all propagated records.

7

QLectives Deliverable D2.1.2

1.3.3 Modification 3: Lifting the Maxflow Hop-Count Restric-
tion

In the third modification we lift the restriction of 2 on the hop count in the maxflow
algorithm and increase it to 4 or 6 hops. With this change, more nodes are in-
volved in the maxflow algorithm and the chance of reaching a node, and so in-
creasing the coverage, is increased.

1.4 Experimental Setup and Results

In this section we give a brief overview of results assessing the accuracy and
coverage of the proposed modifications. Full results and explanations can be
found in the published technical paper of which this chapter is a summary only
[9]. To calculate the experimental results we emulate the creation of subjective
graphs using the BarterCast records received by the crawler, and we emulate
their computation of the reputation values of those peers to which they appear to
have uploaded data. Then we present the experimental results and compare the
effect of the proposed modifications on accuracy and coverage.

1.4.1 Coverage

The barchart in Figure 1.2 shows the number of covered peers for all combina-
tions of the proposed modifications. It is expected that only existing peers can be
covered by the evaluator peers, and so in all of our experiments the maximum
possible value for the coverage is 123 (the number of existing peers as obtained
from the crawler data). The left half of the graph shows the cases in which the
central node is used in the maxflow algorithm and the right half the view owner
itself. As the graph shows, full gossiping boosts the coverage dramatically. Using
the central node increases the coverage too, specially in 2-hops maxflow, but for a
larger number of hops, it is less effective. Increasing the number of hops has more
or less the same influence as using the central node, and in both dissemination
methods the biggest improvement is seen when we go from 2 to 4 hops.

1.4.2 Accuracy

In Figure 1.3 we show the fractions of nodes for which either the central node
in the subjective graph or the local peer provides a better estimation of the rep-
utation value for different numbers of hops in maxflow and in both 1-hop and
full-gossip dissemination. In practice, equal reputation estimation means that
both reputation values are equal to 0. As the left hand of the figure (1-hop dis-
semination) shows, in more than 80% of the cases the central node and the view
owner give the same estimation. When we move to full gossiping, the situation
changes considerably, and using the central node gives better estimations. Espe-

8

QLectives Deliverable D2.1.2

Figure 1.2: The coverage of the BarterCast mechanism in different scenarios. (Er-
ror bars show the standard error of mean.)

cially with 4 and 6 hops, the number of cases for which the central node is better
is twice the number of cases for which the view owner is better.

Figure 1.3 only shows which combination of the methods is better, but it does
not tell how much they are better. To have a grasp of the improvement rate we
compare the mean and the median of estimation errors. Figure 1.4 shows the
mean and its standard error for all combinations of the modifications. As the
graph shows, only changing the number of hops or using the central node does
not improve much, and using the full gossiping is needed. Then, using both
the central node and a higher number of hops decrease the estimation error, and
when all modifications are applied, the mean of the errors becomes 0.404.

1.5 Summary

In this chapter we overviewed results from an associated paper [9] in which we
performed an empirical analysis of the accuracy and the coverage of the Barter-
Cast reputation mechanism and proposed three applicable modifications to im-
prove these values: using betweenness centrality, using full gossip instead of
1-hop dissemination of BarterCast records, and increasing the path length in the
maxflow algorithm. Our results show that using full gossip leads to the largest
improvement according to our metrics. The other two modifications provide sig-
nificant improvements, but only if combined with full gossip.

After understanding the improvements leveraged by changes in the design

9

QLectives Deliverable D2.1.2

Figure 1.3: Comparing the accuracy of the central node against the view owner
in the BarterCast mechanism.

Figure 1.4: The mean of the estimation error in the BarterCast mechanism. (Error
bars show the standard error of mean.)

10

QLectives Deliverable D2.1.2

of BarterCast, some open questions related to the proposed improvements need
now to be addressed. Also full gossiping increases the dissemination perfor-
mance, but it is more vulnerable to misreporting attacks, and the indirect re-
ports should be treated carefully. A possible solution for this problem could be
to put the indirect reports in a secondary view and to add them to the primary
view, used for reputation evaluation, if they are received from more than a certain
number of peers or by highly reputed peers. Another method to address the mis-
reporting attack is the use of double signatures. In this solution, before dissem-
inating a record, the content sender and receiver sign the associated BarterCast
record using their private keys. Using this technique no other peer can eavesdrop
and change the record.

11

QLectives Deliverable D2.1.2

12

Chapter 2

Evolutionary Inspired Distributed
Algorithmic Mechanism Design

In this chapter we summarise ongoing work (yet to be published) which applies
a evolutionary inspired approach to designing new P2P protocols by creating a
strategy space of protocols and performing round-robin tournaments between
them in realistic simulated settings. This approach is directly inspired by the
famous tournaments conducted by Axelrod and described in the classic book on
the evolution of cooperation [3]. Currently we have not applied full evolution
within the strategy space but may perform such experiments in future work.

Traditionally, P2P designers have used game theory for modeling and ana-
lyzing incentives. We argue that traditional techniques focus on single points in
the strategy space, employ unrealistic definitions of robustness, and also do not
address populations where nodes may not behave rationally. We apply a game
theoretic analysis to a popular P2P protocol and design a Nash equilibrium vari-
ant. However, we discover the limitations of this analysis upon testing it with a
new model and simulation based methodological approach. Our new approach
relies on searching for desired protocols in a general design space. Using this
approach designers can obtain meaningful measures of performance and robust-
ness.

2.1 Introduction

Incentives for cooperation in peer-to-peer (P2P) networks has been a much stud-
ied topic since the early days of P2P literature [29], [28]. The most commonly
used tool for the study of incentives in P2P Networks has been Game Theory, the
branch of applied mathematics that attempts to capture individual behavior in
strategic situations, or games. In this paper, we want to analyze some fundamen-
tal questions that we believe have great bearing on protocol analysis and design.
Protocol design in the face of many uncertain variables, such as user behavior and
a priori unknown adversarial designs, ultimately finds impetus in the designer’s
intuitions and assumptions. After the protocol has been designed, a game theo-

13

QLectives Deliverable D2.1.2

retic analysis is often applied to see whether it is a Nash equilibrium. In game
theory, a Nash equilibrium is a solution concept of a game involving two or more
players, in which each player is assumed to know the equilibrium strategies of
the other players, and no player has anything to gain by changing only his or her
own strategy unilaterally [1]. In this paper we address the following fundamen-
tal questions: Is game theory is a good tool to gain insights into protocol analysis
and design; what are the limitations of game theoretic analysis of P2P Systems;
and finally, can an alternate tool be provided that can better guide designers in
protocol analysis and design?

BitTorrent as a strategy in iterated games
To address this question, firstly, we consider one of the most popular P2P proto-
cols, BitTorrent. To date no comprehensive analytical model has been put forward
which treats BitTorrent as a strategy in an Iterated Prisoner’s Dilemma (IPD) be-
tween peers having inhomogeneous resources and that also captures key metrics
such as download speed. The IPD is a repeated game that allows the players to
achieve mutual gains from cooperation, but it also allows for the possibility that
one player will exploit the other, or the possibility that neither will cooperate[3].

There has been work on analytical models of BitTorrent with heterogeneous
bandwidth classes [8], [19]. However, these do not model the BitTorrent protocol
as a strategy in a game. Thus, it is not clear whether peers employing Tit-For-
Tat[3], to play the Prisoner’s Dilemma is the right model for BitTorrent. TFT is
the strategy using which a player cooperates on the first move and then simply
mimics what the other player did in the last round. Hence it has been proposed
that BitTorrent might be better modeled as an auction [18]. With heterogeneous
classes of peers in the system, it is not clear whether the interaction between a
high class peer and a low class peer should be modeled as a PD, or perhaps,
as the Dictator game, a game in which only one player has any strategic input
into the outcome. Do peers in BitTorrent generally apply the TFT strategy or is it
more aptly described as Out-For-Tat (OFT)?1 Thus, we seek to address the follow-
ing points: Can we convincingly argue that considering BitTorrent as a strategy
in iterated games, helps us gain insights from the vast amount of literature on
such games, from diverse fields like psychology, sociology and economics? Can
we develop and validate an analytical model that considers BitTorrent as a TFT
like strategy? Can a strategy model of BitTorrent be developed that explains as-
pects of BitTorrent hitherto deemed contradictory to TFT? Can such a model be
used to provide new insights into BitTorrent’s incentives and lead to protocol
improvement?

We present a model of BitTorrent that allows us to gain new insights into the
protocol. Specifically, given our understanding of the TFT policy in BitTorrent,
we demonstrate that contrary to previous work [10], TFT as implemented in Bit-
Torrent is not a Nash Equilibrium. We also come up with a variant that we call
Birds, which is a Nash Equilibrium.

1OFT is a strategy similar to TFT. However, it differs from TFT in the respect that instead of
retaliating to a partner’s defection, it exits the game to look for another partner

14

QLectives Deliverable D2.1.2

To Nash or not to Nash?

We would like to understand: Given the complexity of modeling a single proto-
col using game theory, given the amount of uncertainty prevailing over a single
protocol’s incentives in the P2P literature, how feasible is it to suppose that tradi-
tional game theoretic analysis can be easily applied for modeling and analyzing
a variety of P2P protocols? How feasible is it to use an equilibrium analysis that,
for tractability purposes, often relies on single points in the design space for ana-
lyzing the robustness of protocols against exploitative variants?2. How realistic is
it to suppose that such an analysis, done on one protocol might provide insights
for the design of other protocols? How reasonable is it for such an analysis to
assume non-rational players; those that are not necessarily maximizing their re-
wards, but whose strategies “may simply reflect standard operating procedures,
rules of thumb, instincts, habits, or imitation” [3]. Furthermore, given a set of
equilibria, can a static analysis indicate which equilibria are more likely to be se-
lected over some others; specifically, can the dynamics of strategies over time be
predicted and can learning and behavior change, over time, be included as part of
such an analysis? On all the above counts, we argue that game theoretic analysis
fares badly.

The PRA approach

We propose an alternate approach which rests on two features: 1) A generalized
multi dimensional strategy space that can characterize when, with whom, how
many and how much, peers can cooperate and which can be applied to a large
variety of P2P Systems, and 2) A simulation based framework for analyzing pro-
tocols developed over this space. In our view, this two-pronged approach gives
designers a general tool for helping them design new protocols; for testing their
performance; and for analyzing their robustness against potential variants. In-
deed we aim to explore if we can achieve the goal envisaged in early pioneering
P2P work[11] for creating a “common framework, including the formalization of
adversarial models, definitions of robustness etc” for analyzing and evaluating
incentive schemes, using a practical approach.

In order to achieve this goal, taking inspiration, not just from traditional game
theory but also from the works done on cooperation in Biology, Psychology and
Social Simulation, we construct abstractions for the most important features and
parameters of reciprocation strategies that could be employed in P2P systems.
We argue that our design space is general enough to be applied to a variety of
P2P Systems.

Furthermore, by using a simulation based methodological approach for ana-
lyzing this space, we provide a framework for designers to design and analyze
new protocols. We call it the Performance, Robustness, Aggressiveness (PRA) analy-
sis. Here, we note that there has been early work on analyzing the design space

2So for example in the specific case of BitTorrent, a broad characterization for rate assignment
strategies has been studied [10]. However, its not quite clear how the change of other protocol
parameters could have an impact on such an analysis.

15

QLectives Deliverable D2.1.2

for P2P networks using evolutionary techniques[12], it was limited to evaluat-
ing simple games on a subset of a limited design space. Our analysis occurs at
a deeper level of protocol design and involves several dimensions that are likely
to be present in implemented protocols. Also, in our view our approach is more
reasonable than an evolutionary approach, in that it analyzes performance and
robustness more comprehensively.

2.2 A Space of P2P Protocols

We wish to design a distributed protocol, which maximizes performance of the
system under the assumption that protocol variants may enter the system. This
challenge can be compared to Distributed Algorithmic Mechanism Design. How-
ever, rather than propose a single protocol we define a design space over a set
of salient dimensions, which affect the incentive structure. We therefore focus on
those aspects of the protocol, which require cooperative peer interaction. The out-
come of these interactions determines the performance of the system. We have
identified the following salient dimensions applicable to a large variety of P2P
systems. We assume that peers have access to private and/or shared storage.

Peer Discovery: In order to perform productive peer interactions, it is neces-
sary to find others, for example, when a peer is new in the system; looking for
better matching partners or existing partners are unresponsive. The timing and
nature of the peer discovery policy are the important aspects of this dimension.
In BT a peer locates other peers by contacting a central server called the Tracker.
Peers may also discover each other using a distributed mechanism called PEX
(Peer Exchange) and / or a DHT (Distributed Hash Table).

Stranger policy: When interacting with an unknown peer (stranger), past his-
tory cannot be used to inform actions. It is therefore necessary to apply a stranger
policy. The way peers allocate resources to strangers is an important aspect of
this dimension. In BT an “optimistic unchoke” policy serves as a stranger policy.
Random strangers are selected every 3 rounds (normally 30 seconds). The num-
ber of peers to optimistically unchoke can be fixed or a function of bandwidth.
Therefore, BT follows an always cooperate strategy against strangers.

Selection Function: When a peer requires interaction with others this func-
tion determines which of the known peers should be selected. This could include,
for example, past behavior (through direct experience or reputation system), ser-
vice availability and liveness criteria. BT implements the selection function using
the regular unchoke policy. The regular unchoke policy uses a candidate list, a
ranking over this list and a value for the number of peers to select. The candidate
list includes all those peers who provided data to the peer in the last round. The
ranking is in order of the fastest first. The number of partners is usually set to 4
or a function of the peer’s upload bandwidth.

Resource Allocation: During peer interactions resources must be allocated to
the selected peers (given by the selection function). The way a peer divides its
resources among the selected peers, defines the Resource Allocation Policy. In

16

QLectives Deliverable D2.1.2

BT a peer divides its resources (upload bandwidth) equally over all peers that it
cooperates with in a given round of interaction.

2.3 The PRA Analysis Approach

We can characterize any protocol, from a given design space, over three measures
(or dimensions). For a given protocol Q, the three measures we choose are:

• Performance - overall performance of the system when all peers execute Q

• Robustness - ability of a majority population executing Q to outperform a
minority subpopulation executing a protocol other than Q

• Aggressiveness - ability of a minority population executing Q to outperform
a majority population executing a protocol other than Q

We formulate a way to assign values to each of the three measures normalized
into the range [0..1]. Hence the properties of any given Q can be characterised
as a point within a three dimensional Performance, Robustness, Aggressiveness
(PRA) space.

It is desirable, in open systems, to design protocols which maximise all three
measures. However, it is clear that there will often be a tradeoff between them.
For example, one may design protocols with high performance but low robust-
ness or conversely high robustness and low performance. For example, an early
BitTorrent variant was supposedly more robust but was said to lower perfor-
mance. Similarly, an effort based variant of BT achieves higher performance than
normal BT but is seemingly not robust.

We now define more precisely how we can map a given protocol Q, which
can be expressed as a point in the design space, to a point in the PRA space. We
assume that for each peer in a system of peers we can calculate a utility which
quantifies individual performance.

Given this we define the performance (P) of protocol Q as the sum of all in-
dividual utilities in a population of peers executing Q normalised over the entire
protocol design space. Hence where P = 1 this indicates the best performance
obtained from any protocol in the design space.

We define the Robustness (R) for protocol Q as the proportion of all other pro-
tocols from the design space that do not outperform Q in a “tournament”. A
tournament consists of a mixed population of peers executing one of two proto-
cols (where Q is in the majority). The winning protocol is that which obtains the
higher average utility for the peers executing it.

Aggressiveness (A) is similarly defined as Robustness but here Q is in the
minority.

17

QLectives Deliverable D2.1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rf

or
m

an
ce

 (P
)

Robustness (R)

All protocols in design space

Figure 2.1: Scatter plot of all approx. 4000 protocols in the design space with ro-
bustness (R) against performance (P). Note the two clusters indicating two classes
of protocol (one with low performance and medium robustness and one with
higher performance and a broader range of robustness including highly robust).
The underlaying mechanisms within the two classes are currently under inves-
tigation. The performance and robustness measures are defined in the text. The
results presented here are a synthesis of over 160 million individual simulation
runs.

2.4 BitTorrent Protocol Space - Some Initial Results

We defined a space of BT protocols over the dimensions previously discussed.
We do not give details of these dimensions here (this will be discussed in detail
in the forthcoming technical paper) however, they are sufficient to capture many
BT protocol variants including several already proposed and deployed variants
and a large space of novel variants which have not been examined before. Overall
the space comprised approx. 4000 protocol variants. Simulation runs were per-
formed to determine performance (P) and robustness (R) measures using realistic
bandwidth distributions and multiple runs (ten) to reduce variance due to noise.
For the robustness experiments this required approx. 160 million individual runs.
A scatter plot of results can be seen in figure 2.1.

2.5 Summary

In this chapter we have briefly summarised on-going work that applies an ap-
proach, which we consider quite general, for exploring a space of protocol vari-

18

QLectives Deliverable D2.1.2

ants. We hope to have given a flavour for the results that are being obtained.
Detailed descriptions and analysis will be reported in a soon to be produced tech-
nical paper.

19

QLectives Deliverable D2.1.2

20

Chapter 3

BitTorrent’s Dilemma: Enhancing
Reciprocity or Reducing Inequity

This chapter gives an overview of a published technical paper. Further details
can be found in the technical paper [14].

Enhancing reciprocity has been one of the primary motivations for the de-
sign of incentive policies in BitTorrent-like P2P systems. Reciprocity implies that
peers need to contribute their bandwidth to other peers if they want to receive
bandwidth in return. However, the over-provisioning that characterizes today’s
BitTorrent communities and the development of many next-generation P2P sys-
tems with real-time constraints (e.g., for live and on-demand streaming) suggest
that more effort can be devoted to reducing the inequity (i.e., the difference of ser-
vice received) among peers, rather than only enhancing reciprocity. Inspired by
this observation, in this work we analyze in detail several incentive mechanisms
that are used in BitTorrent systems, and explore several strategies that influence
the balance between reciprocity and equity. Our study shows that (i) reducing
inequity leads to a better overall system performance, and (ii) the behavior of
seeders (i.e., peers that hold a complete copy of the file and upload it for free)
influences whether reciprocity is enhanced or inequity reduced.

3.1 Introduction

BitTorrent is a popular peer-to-peer (P2P) protocol for file distribution over the
Internet. In order to induce cooperation among peers, BitTorrent incorporates an
incentive mechanism based on direct reciprocity, where nodes prefer uploading
to peers who have contributed to them in the past at the highest speeds. This
incentive mechanism was designed to allow peers to obtain their file of interest
even in resource-constrained scenarios, e.g., when only a few peers exist that hold
a complete copy of the file (seeders, in BitTorrent terminology), or during flash-
crowds.

However, the BitTorrent ecosystem is nowadays extremely diverse. For exam-
ple, a recent measurement study [20] has shown that most BitTorrent commu-

21

QLectives Deliverable D2.1.2

nities are over-provisioned, i.e., there are significantly more seeders than down-
loaders. Also, the design of many next-generation P2P systems, such as those
for the distribution of live and on-demand streaming [2], [15], has been inspired
by the BitTorrent paradigm. The real-time constraints of these systems require
that all peers are provided with a certain minimum download speed (in order
to support the bitrate of the video) and that peers do not earn more utility in
downloading at rates much faster than that. These observations suggest that it is
not necessary to always enhance reciprocity; in some cases it is more advisable to
reduce inequity among peers, instead. One of the first studies of this trade-off in
BitTorrent-like systems was provided by Fan et al. [4].

In this chapter, we extend earlier work by introducing a more detailed model
and analyzing how the incentive mechanism of the BitTorrent protocol can be
tuned to enhance reciprocity or reduce inequity. Furthermore, in our study we
consider the implications of exchanging BitTorrent’s standard incentive mecha-
nism with one that is based on effort rather than speed. Finally, we also analyze
the role of the seeders. Hence, we provide significant insights into the implica-
tions of this important trade-off. Our contributions can be summarized as fol-
lows:

• we provide an analytical model that characterizes the inherent relationship
between a peer’s performance and the design parameters of the BitTorrent
protocol that are responsible for its incentive mechanism (Section 3.2).

• we use this model to analyze different strategies to enhance reciprocity, re-
duce inequity and understand the role of the seeders (Section 3.3).

• we consider the impact of these strategies on the overall system perfor-
mance (Section 3.3).

Overall, our work aids in informing the design choices that best fit the re-
quirements of a BitTorrent-like P2P system.

3.2 A Fluid Model for BitTorrent

In this section we first introduce the basics of the BitTorrent protocol which are
relevant for our work, then we present our model, and finally we illustrate its
validation by means of a discrete-event simulator.

BitTorrent Overview:

Incentive policies play a key role in BitTorrent-like systems, as they determine
how peers distribute their limited upload bandwidth to other peers. BitTorrent’s
original incentive policy is tit-for-tat (TFT), in which a peer favors other peers that
have recently reciprocated at the highest rate. More specifically, every peer has a
number of upload slots available, which are divided into two categories, regular

22

QLectives Deliverable D2.1.2

unchoke slots and optimistic unchoke slots. Downloaders (referred to as leechers, in
BitTorrent terminology) choose which peers will be allocated to regular unchoke
slots according to TFT. On the contrary, peers to be allocated to optimistic un-
choke slots are chosen randomly from the neighbors set. While regular unchoke
slots are used to enhance reciprocity, optimistic unchoke slots serve the purpose
of 1) potentially discovering new faster peers and 2) allowing new peers to boot-
strap (i.e., obtain their first pieces of the file).

BitTorrent systems also include special peers called seeders, who have a com-
plete copy of the file and share it without any direct benefit to do so. Two pop-
ular seeding policies are: 1) favoring fast peers (FF): seeders allocate their regular
upload slots to peers that downloaded at the fastest rates and optimistic unchoke
slots randomly; 2) random seeding (RS): seeders have no preference and just choose
peers randomly.

Notation Definition
F the size of the file shared in the swarm.
µi the upload capacity of a peer in class i.
Di the download capacity of a peer in class i.
di the per connection download capacity of a peer in class i.
ui number of unchoke slots opened by a peer in class i,

u
(reg)
i and u

(op)
i for regular and optimistic unchoke slot.

xi number of leechers in class i.
πi fraction of leechers in class i, πi = xi/

∑
i xi.

yi number of seeders in class i.
λi the arrival rate of leechers in class i.
γi the rate at which seeders in class i leave the system.
αij the number of upload slots allocated by a leecher in class i

to a leecher in class j.
βij the number of upload slots allocated by a seeder in class i

to a leecher in class j.
ni the number of download slots opened by a class i leecher
Uij the total upload bandwidth allocated from class i to class j.
Dij the fraction of upload capacity of leechers in class i allocated

to leechers in class j.
Sij the fraction of upload capacity of seeders in class i allocated

to leechers in class j.

Table 3.1: Notation of our BitTorrent model

Model description:

We follow a similar fluid modeling approach as Qiu et al. [24] and Meulpolder
et al. [19]. The notation we use is shown in Table 3.1. Similar to the approach in
[19], we group peers into different classes according to their upload capacities,

23

QLectives Deliverable D2.1.2

but we introduce the notion of per connection download capacity. For each class i,
the evolution of the number of leechers, xi(t), and the number of seeders, yi(t), is
as follows:

dxi(t)

dt
= λi −

∑
j Uji(t)

F
,

dyi(t)

dt
=

∑
j Uji(t)

F
− γiyi(t).

(3.1)

In a steady state, although peers are arriving and departing, the total system
population is constant. So it holds that dxi(t)

dt
= dyi(t)

dt
≡ 0, which implies:

λiF = γiyiF =
∑
j

Uji =
∑
j

(Djixj + Sjiyj)µj. (3.2)

Combining this with Little’s Law (xi = λiTi), the average download speed for
leechers in class i can be calculated as:

F

Ti
=
Fλi
xi

=
1

xi

∑
j

(Djixj + Sjiyj)µj. (3.3)

We discuss how to derive the upload bandwidth allocation (Dji and Sji re-
spectively) in the following subsection.

Bandwidth allocation:

Without loss of generality, we assume that µ1 < µ2 < ... < µN and D1 < D2 <
... < DN .

Leechers utilize the TFT policy. As an indirect result, high capacity peers only
unchoke low capacity peers using optimistic unchoke slots:

αij = u
(op)
i πj i, j = 1, 2, ..., N, i > j. (3.4)

Due to their faster upload speed, higher-capacity leechers will get recipro-
cated when they upload to lower-capacity leechers. On average, each leecher in
class j should reciprocate (αijxi)/xj = u

(op)
i πi leechers in class i, as long as it has

enough upload slots. In case there are not enough upload slots, leechers in higher
classes are reciprocated first, i.e.:

αji = min{u(op)i πi, u
(reg)
j −

∑
i<p≤N

αjp}+ u
(op)
j πi. (3.5)

Seeders do not need to be reciprocated since they only upload altruistically.
For seeders who adopt the FF policy we have:

24

QLectives Deliverable D2.1.2

βiN = u
(reg)
i + u

(op)
i πN ,

βij = u
(op)
i πj ∀i, j and j < N,

(3.6)

while for seeders who adopt the RS policy it holds:

βij = uiπj. (3.7)

BitTorrent uses TCP as transport layer protocol. TCP specifies that a peer’s
upload (download) capacity is equally divided over all connections, unless some
of the connections have a bottleneck. When such a bottleneck exists, normally the
leftover bandwidth is equally divided over other connections with a higher link
capacity. Taking this into account and the fact that, in a steady state, peers in the
same class receive a similar service, the average number of download connections
and the per connection download capacity for a peer in class i can be calculated
as:

ni =

∑
1≤j≤N αjixj + βjiyj

xi
,

di =
Di

ni
.

(3.8)

We now reorder the leechers according to di, and we assume that d1 < d2 <
... < dN . The bandwidth allocation can be calculated as:

Dij =
min{µi(1−

∑
p<j Dip)∑

k≥j αik
, dj} · αij

µi
. (3.9)

ReplacingDij , αij with Sij , βij respectively, we can calculate a seeder’s upload
bandwidth allocation in a similar way.

Model Validation:

We have validated our model by means of extensive simulations using a discrete-
event simulator that accurately emulates the behavior of BitTorrent at the level of
piece transfers. Fig. 3.1 illustrates the simulation results against the model pre-
dictions for a system with two classes of peers, fast and slow, from which we can
make the following observations:

1. the model predictions are close to the simulation results;
2. the average download speed of both fast and slow peers increases when

there are more seeders;
3. the model predictions become less accurate as the fraction of seeders grows.

This can be explained considering that, when a high fraction of peers are seeders
(above 70 % in this case), fast leechers have a hard time in finding other fast

25

QLectives Deliverable D2.1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5000

10000

15000

fraction of seeders

av
er

ag
e

do
w

n
lo

ad
 s
p
ee

d
(K

bp
s)

fast peers (sim)
slow peers (sim)
fast peers (model)
slow peers (model)

Figure 3.1: The average download speeds of fast and slow peers in a system with
50 fast peers and 50 slow peers, for different fraction of seeders. The capacities of
peers are the following: 1024 Kbps up and∞ down for fast peers; 512 Kbps up
and 1024 Kbps down for slow peers. Seeders use the FF policy.

leechers to reciprocate with. While in our model we assume that, in a steady
state, leechers can always find enough other leechers.

Currently we have not validated the model against real-world data, such as
that collected from the QMedia living lab. This could be a topic for future work.

3.3 Analysis of Four Strategies

In this section, we analyze the balance between enhancing reciprocity or reducing
inequity in BitTorrent. Based on our model, we evaluate the following candidate
strategies:

A) fast peers opening more regular unchoke slots;

B) all peers opening more optimistic unchoke slots:

C) replacing TFT with an effort-based incentive policy;

D) seeders’ role: favoring fast peers vs seeding randomly.

We use the following performance metrics:
1. download speed: we use this metric to characterize performance;
2. sharing ratio: the ratio between the total amount of data uploaded and

downloaded; this metric represents fairness in relation to contribution to the sys-
tem (e.g., a sharing ratio close to 1 for all peers means that all peers have con-
tributed as much data as they have consumed);

3. inequity coefficient: the largest download speed divided by the smallest
download speed; it indicates fairness in relation to the bandwidth capacity that
peers receive from the system.

26

QLectives Deliverable D2.1.2

Unless stated otherwise, we consider a system with two classes of peers, fast
(1024 Kbps up and∞ down) and slow (512 Kbps up and 1024 down).

Strategy 1: enhancing reciprocity with fast leechers opening more regular slots

Regardless of a peer’s class, opening more upload slots can help a peer to 1)
find more potential fast peers, or to 2) weaken another peer’s potential monopoly
on its uploading bandwidth since less bandwidth will be allocated to each upload
slot. On the other hand, opening too many slots is neither realistic nor reason-
able, since too many TCP connections could deteriorate link performance. Also
it would become harder for slow peers to succeed in competing for reciprocity
with faster peers.

Given the above considerations, fast peers have a stronger motivation to open
more slots than slow peers, since they may benefit from more extensive explo-
ration, while remaining competitive in TFT. Having fast peers open more upload
slots is a way to enhance reciprocity, as more bandwidth will be allocate to the
regular unchoke slots. Fig. 3.2(a) shows that as the number of upload slots of fast
peers increases, their download speed improves (we can observe a growth of 10%
when the number of slots goes from 3 to 10), while the average download speed
of all peers decreases (10% with the number of slots from 3 to 10). This is due to
the increasing inequity (almost 50%) between the two classes of peers, as shown
in Fig. 3.2(c). On the other hand, we notice that the sharing ratio of fast peers
decreases as they open more slots, and that of slow peers increases (Fig. 3.2(b)).
The perfect reciprocity (sharing ratio equal to 1 for both fast and slow peers) is
achieved when fast peers open 5 upload slots.

In the following theorem we state the conditions necessary to achieve the per-
fect reciprocity.

Theorem. In a BitTorrent system with two classes of peers, no seeders, and no download
bottleneck, perfect reciprocity is achieved if and only if:

µfus
µsuf

=
u
(op)
f + u

(op)
s

u
(op)
f

. (3.10)

Proof. We first show that for a system with perfect reciprocity, Eq. 3.10 holds. The
sharing ratio of a leecher in class i in a steady state is equal to the ratio of its
upload and download speed, i.e.:

µi
λiF/xi

=
µixi

F
∑

j∈{f,s}Djixjµj
. (3.11)

Perfect reciprocity implies that leechers in different classes achieve the same
sharing ratio, i.e.:

µfxf∑
j∈{f,s}Djfxjµj

=
µsxs∑

j∈{f,s}Djsxjµj
. (3.12)

27

QLectives Deliverable D2.1.2

3 4 5 6 7 8 9 10
400

600

800

1000

1200

numer of a fast peer’s upload slots

a
ve

ra
g
e
 d

o
w

n
lo

a
d
 s

p
e
e
d
 (
K

b
p
s)

fast peers
slow peers
average

1 2 3 4 5
500

600

700

800

900

1000

1100

number of optimistic unchoke slots

a
ve
ra
g
e
 d
o
w
n
lo
a
d
 s
p
e
e
d
 (
K
b
p
s)

fast peers
slow peers
average

(a) Average download speed

3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

numer of a fast peer’s upload slots

sh
a

ri
n

g
 r

a
ti
o

fast peers
slow peers

1 2 3 4 5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

number of optimistic unchoke slots

sh
a
ri
n
g
 r

a
tio

fast peers
slow peers

(b) Sharing ratio

3 4 5 6 7 8 9 10
1.6

1.8

2

2.2

2.4

2.6

numer of a fast peer’s upload slots

in
e
q
u
ity

 c
o
e
ff
ic

ie
n
t

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

number of optimistic unchoke slots

in
e
q
u
it
y

co
e
ff
ic

ie
n
t

(c) Inequity coefficient

Figure 3.2: The influence of the number of upload slot in a system with 100 leech-
ers and no seeders.

28

QLectives Deliverable D2.1.2

It follows that Eq. 3.10 holds.

Next we show that when Eq. 3.10 holds, perfect reciprocity is achieved. Sub-
stituting Eq. 3.10 into Eq. 3.11, we get Eq. 3.12, which implies that fast and slow
leechers have the same sharing ratio. It follows that perfect reciprocity is achieved.

From the above theorem it follows that, when we use µf = 1024, µs = 512, us =

5 and u
(op)
s = u

(op)
f = 1, a perfect reciprocity is obtained for uf = us = 5.

Strategy 2: reducing inequity with leechers opening more optimistic unchoke
slots

Here we analyze the influence of having all peers open more optimistic un-
choke slots. While peers always open 5 unchoke slots in total, we let the number
of their optimistic unchoke slots vary from 1 to 5. As we can see in Fig. 3.2(a), in
this way the download speed of slow leechers is improved by 40%, at the expense
of the fast leechers. Interestingly, the average download speed of the whole pop-
ulation increases of 15%. Moreover, we observe a 45% decrease of the inequity
coefficient (Fig. 3.2(b)).

However, it should be noted that by having peers open more optimistic un-
choke slots, the effectiveness of TFT is reduced, as a peer that does not contribute
is chosen with the same probability as a cooperative slow peer.

Strategy 3: reducing inequity by replacing TFT with effort-based incentives

Rahman et al. [25] have recently proposed a novel incentive mechanism based
on effort, rather than speed. More specifically, peers are not rewarded based on
the absolute amount of data they provided, but based on the relative amount of
bandwidth they make available (utilized or not). With this approach, a slow peer
offering all its bandwidth to the system is preferred over a fast peer offering 0.9
of its total bandwidth.

Consider that there are two types of peers in the system, peers that contribute
all their upload bandwidth (fully cooperative) and peers that only contribute a frac-
tion of it (partially cooperative). Let np represent the number of partially coopera-
tive peers, and nff , nfs represent the number of fully cooperative peers that have
a low or high upload capacity respectively. Each peer reciprocates fully cooper-
ative peers by allocating regular unchoke slots to them, and punishes partially
cooperative peers by only optimistically unchoking them. The slot allocation for
each class of peers can be calculated as:

29

QLectives Deliverable D2.1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

fraction of partially cooperative peers

av
er
ag
e
do
w
nl
oa
d
sp
ee
d
(K

bp
s)

fully cooperative (slow)
fully cooperative (slow)
partially cooperative

(a) Influence of the fraction of partially co-
operative peers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
200

400

600

800

1000

fraction of fast leechers

av
er
ag
e
do
w
nl
oa
d
sp
ee
d
(K

b
ps
)

fast (effort)
slow (effort)
average (effort)
fast (TFT)
slow (TFT)
average (TFT)

(b) Comparison between effort-based and
TFT: average download speed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

fraction of fast leehers

sh
ar
in
g
ra
ti
o

fast (effort)
slow (effort)
fast (TFT)
slow (TFT)

(c) Comparison between effort-based and
TFT: sharing ratio

Figure 3.3: The performance of effort-based mechanism. The fast and slow peers’
upload capacities are 1024 and 256 Kbps, respectively.

30

QLectives Deliverable D2.1.2

αi(p) =
u
(op)
i np

nff + nfs + np

αi(ff) =
(ui − αi(p))nff
nff + nfs

αi(fs) =
(ui − αi(p))nfs
nff + nfs

∀i ∈ {p, ff, fs}.

(3.13)

Given Eq. 3.13, the upload bandwidth allocation can be calculated in a similar
way as in our earlier analysis.

The idea of this incentive scheme is to reduce inequity among the fully cooper-
ative peers while still punishing the partially cooperative peers. Its effectiveness
can be observed in Fig. 3.3(a). In a system where all peers are fully cooperative,
the effort-based scheme eliminates the system’s inequity and achieves a better
overall performance. The average download speed using effort-based incentives
is always higher than when using TFT (see Fig. 3.3(b)). Furthermore, the effort-
based mechanism leads to a more equal sharing ratio between fast and slow peers
(see Fig. 3.3(c)).

Strategy 4: enhancing reciprocity or reducing equity with a seeder’s policies

The mainline BitTorrent client has been implemented with two different seed-
ing strategies in different releases. One is the favoring of fast peers. This strategy
accelerates a fast leecher’s ability to finish downloading, thereby potentially hav-
ing it serve as fast seeder in the system sooner. The other strategy is seeding ran-
domly. The first strategy is resource-constrained oriented, as it aims at increasing
the serving capacity quickly. The second strategy is more equity oriented, as all
peers are treated in the same way.

We have applied our model to analyze and compare these two strategies.
Fig. 3.4(a) and Fig. 3.4(c) show that if seeders seed randomly, the system achieves
a better overall performance (in terms of a higher average download speed) and
the inequity is reduced. On the contrary, if seeders favor fast peers, the reciprocity
is enhanced: both fast and slow peers have a sharing ratio higher than in a system
where seeders adopt random seeding (Fig. 3.4(b)).

3.4 Related Work

There are a number of studies on modeling and improving BitTorrent’s incen-
tive policies. Some earlier work focuses only on homogeneous systems [17], [33],
[24]. In [30], the authors consider heterogeneous BitTorrent systems, but only
with two classes of peers. Fan et al. [4] have developed a general heterogeneous
model to evaluate the tradeoff between performance and fairness. Meulpolder et

31

QLectives Deliverable D2.1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

fraction of seeders

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

(K
bp

s)

RS seeders
FF seeders

(a) Average download speed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

fraction of seeders

sh
ar
in
g
ra
ti
o

fast peers (RS seeders)
slow peers (RS seeders)
fast peers (FF seeders)
slow peers (FF seeders)

(b) Sharing ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

fraction of seeders

in
eq
ui
ty
 c
oe
ff
ic
ie
nt

FF seeders
RS seeders

(c) Inequity

Figure 3.4: The influence of the seeding strategy: favoring fast peers (FF) or ran-
domly seeding (RS)

32

QLectives Deliverable D2.1.2

al. [19] and Chow et al. [8] also provide models for heterogeneous BitTorrent sys-
tems, with which they analyze the clustering and data distribution in BitTorrent
swarms. While these works all focus on a particular design, we analyze the per-
formance of different incentive policies from a higher level: we consider different
BitTorrent applications and stress that merely enhancing reciprocity is not suffi-
cient in the design of a good incentive policy. We furthermore identify several
strategies that can be used to enhance reciprocity or reduce inequity.

3.5 Summary

In this chapter, we have provided an overview of an analytical model for het-
erogeneous BitTorrent systems that captures the essence of BitTorrent’s incen-
tive policy. Detailed results are given in the paper this chapter is based on [14].
Based on our model, we have analyzed how TFT could enhance reciprocity or re-
duce inequity by carefully tuning the number of regular and optimistic unchoke
slots. We have also compared TFT to an effort-based incentive policy, and showed
that a policy that focuses on reducing inequity leads to a BitTorrent system that
achieves a better overall performance. Finally, we have analyzed different seed-
ing policies and our results show that, although seeders do not need to be recip-
rocated, they can still be used to further enhance reciprocity or reduce inequity
among leechers.

33

QLectives Deliverable D2.1.2

34

Chapter 4

Summary and further research
questions

Each of the three lines of research presented in this deliverable raises further re-
search questions. In chapter 1 it was observed that a full gossiping approach
can dramatically improve the currently deployed distributed reputation system
within Tribler. But this raises issues of security as, in general, gossip is hard
to secure - yet solutions have been discussed and could be developed in future
work. The current updated BarterCast II implementation is discussed in deliver-
able D4.3.2. In chapter 3 detailed analysis indicates that both performance and
inequality can be improved by simple changes to the resource allocation policy
in BitTorrent (based on slot numbers) - although it is an open issue if such a de-
ployed client would spread. To answer this would require measurements and the
development of realistic user models. Finally, chapter 2 applies a tournament ap-
proach to searching a space of P2P protocols using large-scale simulation results
- allowing for realistic assessments of robustness and performance. This latter
approach, although applied here to BitTorrent protocol variants, is presented as a
general approach that could be applied to a wide range of distributed protocols
- which could complement current approaches based on game theoretic analysis
of single points in the design space. Future work here could include deploying
found variants to test their similarity to the simulation results and also applying
the method to a different P2P applications.

35

QLectives Deliverable D2.1.2

36

Bibliography

[1] http://en.wikipedia.org/wiki/nashequilibrium.

[2] A. Vlavianos, M. Iliofotou and M. Faloutsos. BiToS: Enhancing BitTorrent
for Supporting Streaming Applications. In Proceeding of IEEE Global Internet
Symposium, 2006.

[3] R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

[4] B. Fan, D. M. Chiu and J. C. Lui. The delicate tradeoffs in bittorrent-like file
sharing protocol design. In Proceedings of IEEE ICNP, 2006.

[5] M. Barthélemy. Betweenness centrality in large complex networks. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems, 38(2):163–168,
2004.

[6] S. Buchegger and J. Le Boudec. A robust reputation system for mobile ad-
hoc networks. Proceedings of P2PEcon, June, 2004.

[7] A. Cheng and E. Friedman. Sybilproof reputation mechanisms. In Proceed-
ings of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems,
page 132. ACM, 2005.

[8] A. Chow, L. Golubchik, and V. Misra. Bittorrent: an extensible heteroge-
neous model. In INFOCOM 2009, IEEE, pages 585–593. IEEE, 2009.

[9] R. Delaviz, N. Andrade, and J. Pouwelse. Improving accuracy and coverage
in an internet-deployed reputation mechanism. In Proc. IEEE Int’l Conf. Peer-
to-peer Comput. (P2P’2010), pages 1–9.

[10] B. Fan, D. Chiu, and J. Lui. The delicate tradeoffs in bittorrent-like file shar-
ing protocol design. In Network Protocols, 2006. ICNP’06. Proceedings of the
2006 14th IEEE International Conference on, pages 239–248. IEEE, 2007.

[11] M. Feldman and J. Chuang. Overcoming free-riding behavior in peer-to-peer
systems. volume 5, pages 41–50. ACM, 2005.

[12] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for
peer-to-peer networks. In Proceedings of the 5th ACM conference on Electronic
commerce, pages 102–111. ACM, 2004.

37

QLectives Deliverable D2.1.2

[13] L. Freeman. A set of measures of centrality based on betweenness. Sociome-
try, 40(1):35–41, 1977.

[14] A. Jia, L. D’Acunto, M. Meulpolder, J. Pouwelse, and D. Epema. Bittorrent’s
dilemma: Enhancing reciprocity or reducing inequity. In Proc. IEEE Con-
sumer Communications and Networking Conference (CCNC ’11), 2011.

[15] J.J.D. Mol, J. A. Pouwelse, M. Meulpolder, D.H.J. Epema and H.J. Sips. Give-
to-Get: Free-riding-resilient Video-on-Demand in P2P Systems. In Proceeding
of SPIE MMCN, 2008.

[16] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th inter-
national conference on World Wide Web, pages 640–651. ACM New York, NY,
USA, 2003.

[17] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang. Measurements,
analysis, and modeling of bittorrent-like systems. In Proceedings of the 5th
ACM SIGCOMM Conference on Internet Measurement, 2005.

[18] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. Bittorrent is an
auction: analyzing and improving bittorrent’s incentives. In Proceedings of
the ACM SIGCOMM 2008 conference on Data communication, SIGCOMM ’08,
pages 243–254, New York, NY, USA, 2008. ACM.

[19] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema and H.J. Sips. Modeling and
Analysis of Bandwidth-Inhomogeneous Swarms in BitTorrent. In 9th Inter-
national Conference on P2P Systems (IEEE P2P ’09), 2009.

[20] M. Meulpolder, L. D’Acunto, M. Capota, M. Wojciechowski, J.A. Pouwelse,
D.H.J. Epema and H.J. Sips. Public and private bittorrent communities: A
measurement study. In IPTPS, 2010.

[21] M. Meulpolder, J. Pouwelse, D. Epema, and H. Sips. BarterCast: A practical
approach to prevent lazy freeriding in P2P networks. 2009.

[22] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One hop reputations
for peer to peer file sharing workloads. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation, pages 1–14. USENIX
Association, 2008.

[23] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema,
M. Reinders, M. Van Steen, and H. Sips. Tribler: A social-based peer-to-peer
system. Concurrency and Computation–Practice and Experience, 20(2):127–138,
2008.

[24] D. Qiu and R. Srikant. Modeling and performance analysis of bit torrent-like
peer-to-peer networks. In ACM SIGCOMM, 2004.

38

QLectives Deliverable D2.1.2

[25] R. Rahman, M. Meulpolder, D. Hales, J.A. Pouwelse, D.H.J. Epema and H.J.
Sips. Improving efficiency and fairness in p2p systems with effort-based
incentives. In Proceedings of ICC, 2010.

[26] P. Resnick and R. Zeckhauser. Trust among strangers in Internet transac-
tions: Empirical analysis of eBay’s reputation system. Advances in Applied
Microeconomics: A Research Annual, 11:127–157, 2002.

[27] S. Seuken, J. Tang, and D. C. Parkes. Accounting Mechanisms for Distributed
Work Systems. In Proceedings 24th AAAI Conference on Artificial Intelligence
(AAAI ’10), 2010.

[28] J. Shneidman and D. Parkes. Rationality and self-interest in peer to peer
networks. pages 139–148. Springer, 2003.

[29] J. Shneidman, D. Parkes, and L. Massoulié. Faithfulness in internet algo-
rithms. In Proceedings of the ACM SIGCOMM workshop on Practice and theory
of incentives in networked systems, pages 220–227. ACM, 2004.

[30] W. C. Liao, F. Papadopoulos and K. Psounis. Performance analysis of
bittorrent-like systems with heterogeneous users. In PERFORMANCE ’07:
Proceedings of the 26th International Symposium on Computer Performance, Mod-
eling, Measurements, and Evaluation, 2007.

[31] Wikipedia. Ford-fulkerson maxflow algorithm.
http://en.wikipedia.org/wiki/Ford-Fulkerson algorithm.

[32] L. Xiong, L. Liu, and M. Ahamad. Countering feedback sparsity and ma-
nipulation in reputation systems. In Proceedings of the 2007 International Con-
ference on Collaborative Computing: Networking, Applications and Worksharing,
pages 203–212. Citeseer, 2007.

[33] Y. Tian, D. Wu and K. W. Ng. Modeling, analysis and improvement for
bittorrent-like file sharing networks. In Proceedings of INFOCOM, 2006.

39

