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10 Rationality Meets the Tribe
Recent Models of Cultural 
Group Selection1

David Hales

INTRODUCTION

Recent agent-based computational simulation models have demonstrated 
how cooperative interactions can be sustained by simple cultural learning 
rules that dynamically create simple social structures (Riolo 1997, 2001; 
Hales 2000, 2006; Hales and Areteconi 2006; Marcozzi and Hales 2008; 
Traulsen and Nowak 2006). These classes of models implement agents as 
adaptive imitators that copy the traits of others and, occasionally, adapt 
(or mutate) them. Although these models bear close comparison with bio-
logically inspired models—they implement simple forms of evolution—the 
interpretation can be of a minimal cultural, or social, learning process in 
which traits spread through the population via imitation and new traits 
emerging via randomized, or other kinds of, adaptation.

Often agent-based models represent social structures such as groups, 
fi rms or networks of friends, as external and a priori to the agents. In the 
models we discuss in this chapter, however, the social structures are endog-
enous such that agents construct, maintain and adapt them through ongo-
ing behavior. A subset of traits supports the formation and maintenance of 
simple social structures.

As will be seen, it is the dynamic formation and dissolution of these 
structures over time that drive, or incentivize, the agents to behave coop-
eratively. Yet, as we will show, it is not necessary for the individual agents 
to prefer socially benefi cial structures or outcomes; rather they emerge 
through a self-organizing process based on local information and adapta-
tion criteria.

A major advantage of the agent-based approach is that the strict simpli-
fying assumptions of rational action theory can be relaxed because models 
do not need to be designed with deductive tractability in mind but rather 
can be explored through computational simulation.

This is particularly useful for exploring complex models in which agents 
adapt and learn over time without necessarily converging on any equilib-
rium or where many equilibria are possible but it is not clear which would 
be selected.
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This relaxation of rational action assumptions is possible due to the 
technical innovation of agent-based modeling and large-scale simulation 
platforms that allow researchers to empirically experiment with their 
models by performing many exploratory simulation runs, observing 
alternative time series (or histories) and changing model parameters (or 
assumptions). This means that modelers can quickly answer “what if” 
type questions and assess the impact of broad changes in the behavioral 
assumptions on which the models are based. The researcher does not 
have to make an a priori commitment to restrictive assumptions. They 
can be changed (and often are changed) as a result of model exploration 
(Doran 1998).

In the models we present here agents are assumed to have incomplete 
information and bounded processing abilities (bounded rationality). Given 
these relaxed assumptions agents use social learning heuristics (imitation) 
rather than purely individual learning or calculation. It has been argued 
(Simon 1990, 1997) that complex social worlds will often lead to social 
imitation (or “docility” in Simon’s terminology) because agents do not 
have the information or cognitive ability to select appropriate behaviors 
in unique situations. The basic idea is “imitate others who appear to be 
performing well”.

The models we present demonstrate that from simple imitation heuris-
tics can emerge social behaviors and structures that display highly altruistic 
in-group behavior even though this is not part of the individual goals of 
the agents and, moreover, may appear irrational from the point of view of 
the individual agents. Agents simply wish to improve their own individual 
condition (or utility) relative to others and have no explicit conception of 
in- or out-group. Yet a “side effect” of their social learning is to sustain 
group structures that constrain the spread of highly non-social (selfi sh) or 
cheating behavior such as free-riding on the group.

We could replace the term “side effect” with the term “invisible hand” 
or “emergent property”. We can draw a loose analogy with Adam Smith’s 
thoughts on the market (A. Smith 1836). The difference is that there is no 
recognizable market here but rather a dynamic evolution of social structure 
that can transform egotistical imitative behavior into socially benefi cial 
behavior.

We term these kinds of models “tribal systems” to indicate the group-
ing effects and tendency for intra-group homogeneity because individu-
als joining a group often join this group via the imitation of others who 
are already a member of the group. We do not use the term “tribal” 
to signify any relationship between these kinds of models and certain 
kinds of human societies but rather to indicate the “tribal” nature of all 
human organizations, i.e., that individuals almost always form cliques, 
gangs or other groupings that may appear arbitrary and may be highly 
changeable and ephemeral yet have important effects on inter-agent 
dynamics and behavior.
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In these kinds of tribal systems individual behavior cannot be under-
stood from a standpoint of individual rationality without reference to the 
interaction history and group dynamics of the system as a whole. The way 
an individual behaves depends on their history and relationship to the 
groups or tribes that they form collectively.

SITUATING THE MODELS

Diverse models of cultural group selection have been proposed from a wide 
range of disciplines (Wilson and Sober 1994). More recently attempts to 
formalize them through mathematical and computer-based modeling have 
been made.

We wish to situate the models we will discuss in this chapter with refer-
ence to the more traditional game theory (Binmore 1994) approach that 
assumes agents are rational, in the homo economicus sense, and have per-
fect information, common knowledge and no social structures to constrain 
interactions.

Our aim in this section is to give the non-modeling expert a sense of the 
relation between rational action approaches (game theory) and the more 
bio—and socially—inspired approaches of cultural group selection by pre-
senting a number of broad dimensions over which they differ. It is of course 
the case that the boundaries between approaches is never as clean or dis-
tinct as simple categories suggest, however, to the extent that a caricature 
can concisely communicate what we consider to be key points that distin-
guish approaches it can be of value.

Figure 10.1 shows two dimensions along which game theory and cultural 
group selection approaches may be contrasted. Traditionally game theory 
models have focused on agents with unbounded rationality (i.e., no limit 
on computational ability) and complete information (i.e., utility outcomes 
can be calculated for all given actions). The cultural group selection models 
presented here focus on highly bounded rationality (agents just copy those 
with higher utility) and highly limited information (agents cannot calculate 
a priori utility outcomes). The benefi t that game theory gains by focusing 
on the bottom left-hand region is analytic tractability by proving equilib-
rium points such as Nash equilibrium for given games. Given incomplete 
information and bounded rationality it generally becomes more diffi cult 
to fi nd tractable solutions and hence (agent-based) computer simulation is 
often used.

Figure 10.2 shows another two dimensions, learning and utility, along 
which a broad distinction can be made. Game theory models tend to focus 
on individual utility maximization and action or strategy selection (a kind 
of learning) at the individual level via deduction (bottom left). Cultural 
group selection focuses on social learning based on imitation in combi-
nation with rare innovation events (comparable to mutation in biological 
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Figure 10.1 Traditionally, game theory models have focused on agents with 
unbounded rationality and complete information. The cultural group selec-
tion models presented here focus on highly bounded rationality and incomplete 
information.

Figure 10.2 Cultural group selection models also differ from the traditional 
game theory approach in their focus on social learning and (often emergent) 
social utility over individual utility.
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models). The emergent result is increase in social utility even though the 
agents themselves use a heuristic based on trying to improve their own 
individual utility. Hence cultural group selection could also be placed in 
the bottom-right quadrant.

Figure 10.3 shows another two dimensions, interaction and social struc-
ture, that distinguish the cultural group selection models and game theory. 
The cultural group selection models presented here represent interactions 
within dynamic social structures whereas game theory has tended towards 
static “mean fi eld” structures, by which we mean that game interactions 
are often assumed to occur stochastically, with equal probability, between 
agents over time. In the cultural group selection models (as will be seen 
later) a key aspect that drives the evolution of cooperation and increases in 
social utility is the dynamic formation of in-groups of agents that interact 
together exclusively, excluding interactions with the “out-group”.

RECENT CULTURAL GROUP SELECTION MODELS

Historically group selection has been seen as controversial within both biologi-
cal and social sciences due to the diffi culty in advancing a plausible theory and 
the inability of identifying such processes empirically in the fi eld. Also certain 
kinds of naïve non-formalized group selection approaches were exposed as 

Figure 10.3 The cultural group selection models represent interactions within 
dynamic social structures whereas game theory has tended towards static “mean 
fi eld” structures.
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logically incoherent by biologists. However these objections have been chal-
lenged due to recent advances in the area as a result of extensive use of compu-
tational (often agent-based) modeling and a theoretical shift that accepts that 
from selection operating at the individual level can, under broad conditions, 
emerge group-level selection at a higher level. The historical debate from a 
group selectionist perspective is well covered by Wilson and Sober (1994).

We will not retread old ground here but will concentrate on presenting 
a specifi c class of group selection models that have recently emerged in the 
literature. These models may be interpreted as cultural evolutionary models 
in which imitation allows traits to move horizontally. We do not concern 
ourselves here with the biological interpretation of such models but rather 
the cultural interpretation.

Group selection relies on the dynamic formation and dissolution of 
groups. Over time individual entities may change groups by moving to those 
that offer better individual performance. Interaction between entities that 
determine performance is mainly restricted to those sharing the same group. 
Essentially then, in a nutshell, groups that support high performance for the 
individuals that comprise them grow and prosper whereas exploitative or 
dysfunctional groups dissolve as individuals move away. Hence functional 
groups, in terms of satisfying individual goals, are selected over time.

Key aspects that defi ne different forms of group selection are: how group 
boundaries are formed, the nature of the interactions between entities 
within each group, the way that each entity calculates individual perfor-
mance (or utility) and how entities migrate between groups.

The “success” of any group selection model is judged by how well the 
system self-organizes towards achieving a collective goal—whatever that 
may be. Often this will be maximizing the sum of individual utility but 
could involve other measures such as equality or fairness for example.

In almost all proposed social and biological models of group selection, in 
order to test if group selection is stronger than individual selection, popula-
tions are composed of individuals that can take one of two kinds of social 
behavior (or strategy). Either they can act pro-socially, for the good of their 
group, or they can act selfi shly for their own individual benefi t at the expense 
of the group. This captures a form of commons tragedy (Hardin 1968).

Often this is formalized as a prisoner’s dilemma (PD) or a donation game 
in which individuals receive fi tness payoffs based on the composition of 
their group. In either case there is a utility cost c that a pro-social individual 
incurs and an associated utility benefi t b that individuals within a group 
gain. A group containing only pro-social individuals will lead each to gain 
a utility of b—c. However, a group containing only selfi sh individuals will 
lead each to obtain a utility of zero. But a selfi sh individual within a group 
of pro-socials will gain highest utility. In this case the selfi sh individual 
will gain b but the rest will gain less than b—c. Given that b and c are 
positive then it is always in an individual’s interests (to maximize utility) to 
behave selfi shly. In an evolutionary scenario in which the entire population 
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interacts within a single group then selfi sh behavior will tend to be selected 
because this increases utility. This ultimately leads to an entire population 
of selfi sh individuals and a suboptimal average population level fi tness of 
zero. This is the Nash equilibrium (Nash 1950) and an evolutionary stable 
strategy for such a system (J.M. Smith 1982).

There have been various models of cooperation and pro-social behav-
ior based on reciprocity using iterated strategies within the PD (Axelrod 
1984; Riolo 1997). However, we are interested in models which do not 
require reciprocity since these are more generally applicable. In many situ-
ations, such as large-scale human systems or distributed computer systems, 
repeated interactions may be rare or hard to implement due to large popu-
lation sizes (on the order of millions) or cheating behavior that allow indi-
viduals (or computer nodes) to fake new identities.

Tag Model
In Hales (2000) a “tag” model of cooperation was proposed which selected for 
pro-social groups. It models populations of evolving agents that form groups 
with other agents who share an initially arbitrary tag or social marker. The tag 
approach was originally proposed by Holland (1993) and developed by Riolo 
(1997, 2001). The tag is often interpreted as an observable social label (e.g., 
style of dress or accent etc.) and can be seen as a group membership marker. 
It can take any mutable form in an agent-based model (e.g., integer or bit 
string). The strategies of the agents evolve, as do the tags themselves, through 
agents imitating others obtaining higher utility than themselves. Interestingly 
this very simple scheme structures the population into a dynamic set of tag 
groups and selects for pro-social behavior over a wide range of conditions. 
Figure 10.4 shows a schematic diagram of tag group evolution and an outline 
algorithm that generates it.

Figure 10.4 Schematic of the evolution of groups in the tag model. Three genera-
tions (a–c) are shown. White individuals are pro-social; black are selfi sh. Individu-
als sharing the same tag are shown clustered and bounded by large circles. Arrows 
indicate group linage. Migration between groups is not shown.
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In general it was found that pro-social behavior was selected when b > c 
and mt >> ms, where mt is the mutation rate applied to the tag and ms 
is the mutation rate applied to the strategy. In this model groups emerge 
from the evolution of the tags. Group splitting is a side effect of mutation 
applied to a tag during reproduction. A subsequent tag model (Riolo 2001) 
produced similar results although it cannot be applied to pro-sociality in 
general because it does not allow for fully selfi sh behavior of identically 
tagged individuals (Roberts and Sherrat 2002).

Network-Rewiring Models

Network-rewiring models for group selection have been proposed with 
direct application to peer-to-peer (P2P) protocol design and biological sys-
tems (Hales 2004, 2006; Santos et al. 2006). In these models, which were 
adapted from the tag model described earlier, individuals are represented 
as nodes on a graph. Group membership is defi ned by the topology of the 
graph. Nodes directly connected are considered to be within the same 
group. Each node stores the links that defi ne its neighbors. Nodes evolve by 
copying both the strategies and links (with probability t) of other nodes in 
the population with higher utility than themselves. Using this simple learn-
ing rule the topology and strategies evolve, promoting pro-social behavior 
and structuring the population into dynamic arrangements of disconnected 
clusters (where t = 1) or small-world topologies (where 0.5 < t < 1). Group 
splitting involves nodes disconnecting from all their current neighbors and 
reconnecting to a single randomly chosen neighbor with low probability 
mt. As with the tag model pro-social behavior is selected when b > c and mt 
>> ms, where ms is the probability of nodes spontaneously changing strate-
gies. Figure 10.5 shows a schematic of network evolution (groups emerge as 
cliques within the network) and an outline algorithm that implements it.

Figure 10.5 Schematic of the evolution of groups (cliques) in the network-rewiring 
model. Three generations (a–c) are shown. White individuals are pro-social; black 
are selfi sh. Arrows indicate group linage. Notice the similarity to the tag model in 
Figure 10.4.
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In this model we see dynamics and properties similar to the tag model but 
in an evolving graph. This is interesting because social networks can be 
viewed as graphs. In addition from a computer science perspective graphs 
can represent P2P networks. In Hales (2006) the same rewiring approach 
was applied to a scenario requiring nodes to adopt specialized roles or skills 
within their groups, not just pro-social behavior alone, to maximize social 
benefi t. This indicates that the same kind of group selective process can 
support the emergence of in-group specialization.

Interestingly it has also been shown recently (Ohtsuki 2006) in a similar 
graph model tested over fi xed topologies (e.g., small-world, random, lat-
tice, scale-free) that under a simple evolutionary learning rule pro-social 
behavior can be sustained in some limited situations if b / c > k, where k is 
the average number of neighbors over all nodes (the average degree of the 
graph). This implies that if certain topologies can be imposed then pro-
social behavior can be sustained without rewiring of the topology dynami-
cally. Although analysis of this model is at an early stage it would appear 
that groups form via clusters of pro-social strategies forming and migrating 
over the graph via nodes learning from neighbors.

Group-Splitting Model

In Traulsen and Nowak (2006) a group selection model is presented that 
sustains pro-social behavior if the population is partitioned into m groups 
of maximum size n so long as b / c > 1 + n / m. In this model group struc-
ture in combination with splitting and extinction processes is assumed a 
priori and mediated by exogenous parameters. Splitting is accomplished 
by explicitly limiting group size to n; when a group grows through repro-
duction beyond n it is split with (high) probability q into two groups by 
probabilistically reallocating each individual to one of the new groups. 
By endogenously controlling n and m a detailed analysis of the model 
was derived such that the cost/benefi t condition is shown to be necessary 
rather than just suffi cient. The model also allows for some migration of 
individuals between groups outside of the splitting process. Signifi cantly, 
the group-splitting model can potentially be applied recursively to give 
multilevel selection groups of groups etc. However, this requires explicit 
splitting and reallocation mechanisms at each higher level. Figure 10.6 
shows a schematic of group-splitting evolution and an outline algorithm 
that implements it.

APPLICATIONS

We believe that these new models could potentially have applications in 
both understanding real existing social systems and engineering new tools 
that support new kinds of social systems particularly in online commu-
nities. Increasingly online Web2.0 and other communities allow for the 
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tracking and measurement of the dynamics of groups over time (Palla et al. 
2007). Potentially massive clean data sets can be collected, and the models 
presented here can be calibrated and validated (or invalidated).

In addition, as has already been implied earlier, P2P systems composed 
of millions of online nodes could benefi t from the application of group 
selection techniques by applying them directly to the algorithms (or proto-
cols) used by nodes to self-organize productive services for users.

These two kinds of application of the models are not independent because 
by increasing our understanding of productive human social processes we can 
automate aspects of those processes into computer algorithms to increase their 
speed and reach (consider online social networking as an example of this).

CONCLUSION

What these models demonstrate is that simple agent heuristics based on 
imitation directed towards individual improvement of utility can lead to 
behavior in which agents behave “as if” there is a motivating force which is 
higher than self-interest: the interests of the group or “tribe”. This higher 
force does not need to be built in to agents but rather emerges through time 
and interactions—a historical process. The formation of social structures, 
over time, creates conditions that favor pro-social behavior. Agents receive 
utility by interacting in tribes (simple social structures). Tribes that can-
not offer the agent a good “utility deal” will disband as agents “vote with 
their feet” by joining other, better tribes based on their individual utility 
assessment. Of course movement between tribes, here, is not interpreted 
as a physical relocation but rather a social and behavioral one. By copying 
the traits of others who have higher utility the appropriate social structures 
emerge. Increasingly in electronic and virtual communities the cost of such 

Figure 10.6 Schematic of the evolution of groups in the group-splitting model. 
Three generations (a–c) are shown. White individuals are pro-social; black are self-
ish. Individuals along the same group are shown clustered and bounded by large 
circles. Arrows indicate group linage. Migration between groups is not shown.
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movement is converging towards zero or very low individual cost. It could 
be conjectured that it is this low cost, and consequent freedom from geo-
graphical and organizational constraints, which is a major factor in the 
recent success of online communities, virtual social networks and other 
peer-production communities such as Wikipedia (Benkler 2006).

However, this process would not preclude agents with explicit group-level 
utility preferences—i.e., incorporating “social rationality” functions or the 
like. Such agents could potentially improve general welfare through a modi-
cum of explicit planning and encouragement of pro-social group formation. 
The models presented here rely on random trial and error to fi nd cooperative 
pro-social “seeds” which then are selected and grow via the evolutionary 
process—as other agents join the seed. We speculate that an agent with a 
correctly aligned internal model of what would make a successful seed could 
proactively recruit others from the population. However, this introduces 
issues such as explicit recruitment processes, explicit internal social mod-
els and, potentially, transferable utility. This implies the requirement for an 
effective “store of utility” (i.e., money) that the simple models presented here 
do not contain. Here we begin to see formation of something that resembles 
a market. In this context the models we have presented could be seen as “pre-
market” exchange structures in which value is not separated from the social 
structures that produce it because it cannot be easily stored, accumulated, 
transferred or controlled.

We might argue that where such “pre-market” structures perform well then 
there will not be any incentive for agents to engage in the additional costs 
of implementing explicit market structures. The models we have presented 
mainly focus on social dilemma scenarios—situations in which individuals 
can improve their own utility at the expense of the group or tribe they interact 
with. Often the application of the market in these situations does not resolve 
the dilemma in a socially equitable way (i.e., does not lead to cooperation) 
but rather can incentivize non-cooperation. This is such a serious issue that 
game theory explicitly addresses it within the emerging area of mechanism 
design (Dash et al. 2003). However, often these models rely on standard ratio-
nal action assumptions and a high degree of central control that enforce the 
“rules of the game”.

A possible interesting future research direction could be to identify those 
scenarios in which tribal approaches are appropriate and those in which mar-
kets are appropriate. Here perhaps we could forge a third way between mar-
kets versus central control.

NOTES

 1. This work was partially supported by the Future and Emerging Technolo-
gies program FP7-COSI-ICT of the European Commission through project 
QLectives (Grant no. 231200).
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