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Coordination between nodes in open distributed computer systems is a general prob-

lem that’s becoming increasingly relevant as massive peer-to-peer (P2P) systems are

being deployed on the Internet. A major subproblem is establishing and maintaining coop-

eration between nodes. The basic dilemma of cooperation is this: if no central authority

ensures that nodes cooperate for the entire network’s
benefit, nodes will have incentives, in some scenar-
ios, to act selfishly and thus reduce or eliminate the
benefits of forming the network in the first place. For
example, if all nodes in a file-sharing network only
download files rather than upload them, the network
is of zero value to all—nobody can download any-
thing. This is a manifestation of the so-called com-
mons tragedy (see the “Related Work” sidebar).

To solve this problem, we created a simple algo-
rithm, SLACER (a selfish link-based adaptation for coop-
eration excluding rewiring). When executed in a P2P
network’s nodes, SLACER self-organizes the network
into a robust artificial social network (ASN) with small-
world characteristics and high cooperation. SLACER is
based on computational sociology’s tagging approach,1

which supports high levels of cooperation without cen-
tral control, reciprocity, or other evaluation mecha-
nisms. This approach is based on simple rules of social
behavior observed in human societies.

Although we focus on cooperation here, SLACER

isn’t limited to cooperation applications. We can
apply it more generally to coordination problems.
Elsewhere, we’ve applied SLACER to P2P coordina-
tion problems requiring the formation of clusters of
specialized nodes that coordinate their different skills
to improve network level performance.2 This distin-
guishes SLACER from protocols concerned purely
with cooperation maintenance.

Modeling open systems
To meaningfully discuss open P2P systems, we

need two kinds of distinct models: an in-protocol

model (what a proposed protocol does) and an out-
protocol model (how protocols themselves can be
changed, either maliciously or otherwise). The in-
protocol model is relatively easy to formulate and test
because it is specified as an algorithm that runs on
the nodes. However, the out-protocol model is essen-
tially a social theory concerning how users behave.
This is particularly relevant for understanding how a
protocol’s malicious variants might spread in a pop-
ulation of peer nodes.

In P2P protocol design, the out-protocol model is
often implicit. For example, if a protocol designer just
assumes that all nodes will behave cooperatively, that
implies an out-protocol model in which users aren’t
willing to subvert the system. Alternatively, when
designers test protocols on certain kinds of attacks
(where nodes behave maliciously), this implies an out-
protocol model with at least some malicious users.

One way to select an out-protocol model is to
import one from existing disciplines. Classical game
theory, for example, generally assumes that individ-
uals act to maximize their utility, assuming that oth-
ers do the same and understanding completely the
possible utility payoffs of their interactions (that is,
games). This is called rational action. An alternative
model from evolutionary game theory assumes that
individuals will copy the behavior of others who
obtain higher utility.3

The out-protocol model we present here follows
neither of these assumptions (although, interestingly,
our in-protocol imports aspects of the evolutionary
approach). This approach is an inversion of other
approaches. Our out-protocol model assumes a less
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selfish environment than either the classical or
evolutionary approach assumes. This assump-
tion relates to open P2P environments’ spe-
cific nature and, ironically, to certain kinds of
highly selfish user behavior. Open protocols
(that is, client software) that work well
(thanks to the existing cooperative network)
become distributed, but malicious innovations
of those protocols (maliciously hacked
clients) don’t. Modifying a protocol is costly
and requires detailed technical knowledge.
Individuals who hack clients for individual
benefit rather than collective benefit likely
know how this would affect the entire net-
work if everyone used the client. So, if mali-
cious hackers want to benefit from their
clients, they shouldn’t spread them widely.
The converse is true for modifications that
would improve the network’s collective per-
formance. Of course, this argument doesn’t
hold if the hacker’s goal is purely malicious—
to destroy the network at any cost. However,
a truly open system will always be vulnerable,
in some way, to such attacks.

It’s still an open issue what kind of out-
protocol model best matches user behavior
in given contexts. So, P2P researchers select
models based on hunches, anecdote, or tra-
dition. Empirical work can help ground and
validate model selection in the future.

P2P overlay networks
Our target infrastructures for the SLACER

algorithm are unstructured P2P overlay net-
works. Such networks have a population of
nodes—typically, processes situated in a phys-
ical network—that maintain symbolic links to
other nodes (often called neighbors). P2P
applications such as Skype (www.skype.com)
or BitTorrent (www.bittorrent.com) imple-
ment these to provide services.

A valuable property of the overlay net-
work abstraction is that rewiring nodes or
changing the network’s topology is a logical
process in which nodes simply drop, copy,
or exchange symbolic links. It’s therefore
feasible to maintain highly dynamic network
topologies at the overlay layer. 

The SLACER algorithm
Our algorithm follows a link-based incen-

tive approach.4 That is, nodes make and break
links in the network to minimize the effects of
others nodes’ selfish behavior. So, the topol-
ogy itself reflects a network of cooperation.

We assume that peer nodes can change
their strategy (that is, change how they
behave at the application level) and drop and
make links to nodes they know. We also
assume that a node can discover other nodes
randomly from the entire population, com-

pare its performance against those nodes, and
copy their links and strategies. (For a dis-
cussion of how to deal with malicious noise
when nodes exchange information, see this
article’s conclusion.) SLACER implements a
simple local adaptation rule: Nodes can self-
ishly increase their own performance (or util-
ity) in a greedy and adaptive way by chang-
ing their links and strategy. They do this by
copying nodes that appear to be performing
better and by making randomized changes
with low probability. 

Figure 1 shows the pseudocode. Over time,
nodes engage in some application task and
generate some measure of utility U. U is a
numeric value that each node must calculate
on the basis of the particular application
domain’s specifics. For example, this might
be the files downloaded, jobs processed, or
an inverse measure of spyware infections
over some period. The higher the value of U,
the better the node believes it’s performing
in its target domain.

Periodically, a node i compares its perfor-
mance against another node j, randomly
selected from the population. If Ui � Uj, i
drops its current links to other nodes with
high probability W, copies all j links, and
adds a link to j. Additionally, i then copies
j’s strategy; the strategy codes application-

Given the pervasive nature of commons tragedies (see the
main article), researchers have proposed several solutions that
apply to open peer-to-peer systems without central control.

One broad approach is based on reciprocity—nodes are re-
warded in the future for being cooperative and are punished
for being selfish. Much research has been done in evolutionary
game theory to assess these approaches’ effectiveness. Robert
Axelrod showed that the simple tit-for-tat strategy (individuals
store the last interaction made by those they interact with and
return the same in the future) often sustains cooperation in
the Prisoner’s Dilemma game.1 However, tit-for-tat requires
that the same individuals interact regularly. Other work shows
how indirect reciprocity could obviate the need for the same
individuals to repeatedly interact by allowing the spread of
image information.2 If third parties can observe interactions,
they can form an image without direct interaction; they can
observe and later punish a selfish individual.

In very dynamic P2P systems, where many nodes are strangers
to everyone, these approaches don’t directly apply. One alterna-
tive is for all nodes to have access to a shared history of each
node’s behavior and to collectively adapt their behavior toward
strangers, such that the entire system becomes less cooperative
to strangers if many strangers behave selfishly.3 This approach
works when node turnover is low and nodes can maintain a reli-
able shared-data structure. However, maintaining a shared his-

tory increases overhead because each node must record and
report interactions.

Our approach, SLACER (a selfish link-based adaptation for
cooperation excluding rewiring), is a protocol that can give
acceptable performance levels without storing or communicat-
ing a shared history. SLACER sustains cooperation among selfish
nodes when all nodes are strangers. We tested SLACER’s ability
to produce cooperative, connected artificial social networks
(ASNs) by having nodes play Prisoner’s Dilemma and variants.
In Prisoner’s Dilemma, each node has an incentive to act self-
ishly, but collectively, cooperation is the best outcome. The
game captures the tension between individual and collective
interest. SLACER produced high-trust ASNs that connected the
entire node population with almost all nodes reachable from
other nodes via chains of cooperative nodes. The ASNs were
robust and scalable even though nodes acted selfishly.
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level behavior (and could be implemented by
mobile code). After such a copy operation
occurs, i adapts its strategy (with low prob-
ability M) and adapts its links (with proba-
bility MR). Adaptation involves applying a
mutation operation, and link mutation
involves removing each existing link with
high probability W and adding a single link
to a node randomly drawn from the network.
Strategy mutation involves changing appli-
cation behavior with low probability M; the
application domain dictates the specifics of
strategy mutation. After the periodic utility
comparison, the node resets its utility to zero.

Each node is limited to a maximum num-
ber of links or neighbors (its view size). If any
SLACER operation causes a node to require an
additional neighbor above this limit, SLACER

removes a randomly selected existing link to
make space for the new link. Links are
always undirected and symmetrical; if i links
to j, j must also maintain a link to i (and, con-
versely, if i breaks a link to j, j also breaks its
link to i).

Previous tag models (on which SLACER is
based5) have indicated that the mutation rate
applied to the links must be significantly
higher than that applied to the strategy—by
about one order of magnitude, so MR >> M.

When applied in a suitably large popula-
tion, the algorithm follows an evolutionary
process in which high-utility nodes replace
low-utility nodes. However, selfish behavior
isn’t dominant, as we might intuitively expect,
because a form of social incentive mechanism
results from the emergent network topology.
Although individual nodes favor high-utility,
antisocial strategies, these strategies don’t
dominate the population. The topology there-
fore guides the adaptation of the strategy away
from antisocial, selfish behavior.

In figure 1, we assume a function that returns
a random node from the entire node popula-
tion irrespective of the current network topol-
ogy. This function can’t use the network that
SLACER maintains because it can become par-

titioned. In our simulations, we used the
Newscast algorithm6 to provide this service.
Newscast maintains a random, fully con-
nected overlay topology even with high node
failure and malicious behavior, so we could
deploy it to modularly support SLACER.
SLACER invokes a call to the lower Newscast
layer when it requires a randomly sampled
node from the population. Newscast is based
on a gossip protocol; each node has a bounded
network view composed by immediate neigh-
bors’ node descriptors (that is, time-stamped
logical links). Each Newscast node periodi-
cally exchanges its view with that of a ran-
domly selected neighbor; Newscast merges
the two views and keeps the newest links. In
this way, a random overlay topology is main-
tained in a lightweight fashion, and robustness
to nodes joining or leaving the system is
achieved through descriptors’ aging.

The Prisoner’s Dilemma
The two-player, single-round Prisoner’s

Dilemma game captures a situation where a
contradiction exists between self-benefit and
the collective benefit. Two players interact
by choosing to cooperate (C) or defect (D).
For the game’s four possible outcomes, play-
ers receive specified payoffs. Both players
receive a reward payoff (R) for mutual coop-
eration and a punishment payoff (P) for
mutual defection. However, when individu-
als select different moves, the defector
receives a temptation payoff (T) and the
cooperator receives a sucker payoff (S) (see
figure 2a). We assume that neither player can
know in advance which move the other will
make and that players wish to maximize their
own payoff. The dilemma is evident in the
payoff ranking T > R > P > S and the con-
straint 2R > T + S. Although both players
would prefer T, the highest payoff, only one
can attain it in a single game. No player
wants S because it’s the lowest payoff. No
matter what the other player does, a player
always gets a higher score by defecting than

cooperating. D is therefore the dominant
strategy; an ideally rational player would
always choose D.

So, the dilemma is that if both players coop-
erate, they are jointly better off than if they
both defect; however, selfish players have
incentives to select mutual defection. Pris-
oner’s Dilemma is a minimal test that captures
a range of possible application tasks in which
nodes must establish cooperation and trust
with their neighbors without central authority
or external mechanisms that enforce it.

Application-level behavior involves each
node playing Prisoner’s Dilemma with ran-
domly selected neighbors in the SLACER con-
structed network. The Prisoner’s Dilemma
application then sets the utility value that
SLACER requires as the average payoff a node
receives from game interactions. The SLACER

algorithm then adapts the links and strategy
of the nodes as we discussed earlier.

We also tested variants of the Prisoner’s
Dilemma payoffs (see figure 2b). We varied
the T payoff over a number of values strictly
inside the interval [2R..R] (when T > 2R or 
T < R, there is no longer a dilemma). We also
tried a generalized Prisoner’s Dilemma3 to
model client and server interactions where
payoffs are asymmetric (see figure 2c). Addi-
tionally, we let nodes play probabilistic
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Player 1

C CC

Player 2
C R/R S/T

D T/S P/P

Server

D D
C 1/1 0/1.9

Client
C 7/–1 0/0

D 1.9/0 0 / 0 D 7/–1 0/0

(b) (c)(a)

D

Figure 2. The payoff matrix shows (a) the Prisoner’s Dilemma payoff structure, (b) the values used, and (c) alternative values from
an asymmetric generalized Prisoner’s Dilemma where a single player determines payoff values.3 (C means that the player cooperates,
and D means that the player defects. T, R, P, and S are payoffs ranked from highest to lowest.)  

Figure 1. The SLACER protocol runs 
continuously in each node. Each node
maintains a utility value that the 
application level activity sets.

periodically for node i:
select a random node j from the population
if utility Ui � utility Uj

copy strategy from j
drop each link from i with prob(W)
copy each link from j
link to j
with prob(M) mutate strategy of i
with prob(MR) mutate links of i

reset utility U � 0;



strategies where their moves were deter-
mined by a real value indicating a probabil-
ity to cooperate (in this case, mutation
involved changing the real value to another,
uniformly selected at random from [0..1]).
In each case, we found no major differences
in our results.

Measuring cooperatively
connected paths

Our goal in designing SLACER is to self-
organize artificial social networks with desir-
able properties of human social networks,
including

• short paths between all members,
• high cooperation between neighbors, and 
• cooperation paths between members not

directly connected.

To evaluate the ASNs’ quality, we mea-
sured (over the entire node population) the
average path length, proportion of coopera-
tor nodes, and proportion of nodes linked via
chains of cooperators. For the third option,
we introduced a cooperatively connected
path measure that quantifies an ASN’s coop-
erative connectedness. 

We assume a population of nodes in which
each node is in one of two states (C or D).
We define the CCP measure as the propor-
tion of all possible node pairs that are linked
directly or that have at least one cooperative
path between them (see figure 3).

In a connected network in which all nodes
are cooperators, the CCP measure would
obviously be 1. However, even with several

defector nodes inhabiting a network, the
CCP can still be 1, as long as the defectors’
location didn’t obstruct other cooperative
routes between pairs of nodes—that is, alter-
native cooperative routes existed around the
defectors. So, the CCP measure is deter-
mined by the network’s topology and the
strategy distribution over nodes in that topol-
ogy. By combining the CCP measure with
other measures, we get an idea of the ASN’s
strategic topography. For example, in a con-
nected network with a high proportion of
cooperating nodes and low CCP, we would
conclude that a few noncooperative nodes
occupied positions in the network that let
them block numerous unique cooperative
paths between nodes. Because our design
goal for SLACER is to generate connected net-
works of cooperative nodes, our ideal out-
come would be an ASN with the CCP at or
close to the maximum of 1.

Simulation specifics
We performed simulation experiments

using two independent implementations.
(For an implementation in the PeerSim
environment or the system itself, see http://
peersim.sourceforge.net. Recent research has
demonstrated how to migrate PeerSim imple-
mentations to prototype implementations for
real-world testing.6)

One time cycle
When nodes engage in their application

tasks (that is, they play Prisoner’s Dilemma
with randomly selected neighbors), they peri-
odically initiate the Compare Utility activity
in SLACER’s active thread. We programmed
the simulations so that, on average, over one
cycle, each node initiates some application-
level activity, causing a utility update and
executing one Compare Utility call. Our sim-
ulations were both semiasynchronous and
fully asynchronous.

In one time cycle, the simulation selects
10N nodes from the population randomly
with replacement (where N is the total popu-
lation size). When a node is selected, it
chooses a neighbor at random and plays a sin-
gle round of Prisoner’s Dilemma. If a selected
node has no neighbors, it links to a randomly
selected node so that they can play a game.
Both nodes play the game, executing the strat-
egy their current state indicates (C or D).
When nodes compare utility in the SLACER

algorithm, the algorithm uses the average util-
ity over the total games played rather than the
absolute utility.

Two simulation variants
In the semiasynchronous simulations, after

nodes had played their Prisoner’s Dilemma
games, the simulation randomly selected N
nodes with replacement. They executed
SLACER (see figure 1), starting a new cycle. In
the fully asynchronous version, the simulation
executed SLACER probabilistically for each
node after each game (with probability 0.1).

Here we’re modeling the notion that util-
ity updates for some application tasks might
be instantaneous and asynchronous. For
example, neighbor nodes might provide
requested resources immediately in some
application tasks. However, in others,
rewards might be delayed and synchronized
over a large set of nodes, especially when
several nodes must coordinate to achieve a
collective task before receiving their rewards
(for example, in a P2P search engine pool-
ing its page rankings). Obviously, the appli-
cation task’s specifics could dictate many
possible schemes; however, for the purposes
of our initial Prisoner’s Dilemma test appli-
cation, we considered these two.

Parameter settings
For the results we present here, the Pris-

oner’s Dilemma payoffs were set to T = 1.9,
R = 1, P = 0, and S = 0. We selected T as a
large value less than 2R. Although Prisoner’s
Dilemma defines P > S, we obtained no
major difference in our results when P’s
value was small. We obtained similar results
over various parameterizations of the payoff
values. We set the mutation rates to M =
0.001 and MR = 0.01. Again, over various
values of M and MR, in the same order of
magnitude, we obtained similar results. The
nodes’ maximum view size was 20, so each
node could link to 20 neighbors maximum.
We ran the simulations with the rewire prob-
ability W = 0.9 over a range of network sizes
from N = 2,000 to 64,000. We selected W =
0.9, which let the nodes keep two old links,
on average, when they moved in the network
by copying another node’s links.

Message overheads
In a simulation cycle, SLACER produces on

the order of O(N) messages of overhead (we
assume that a single message would fit into
one packet of the underlying network infra-
structure). Compared with a shared-history
approach,3 the message overhead would be on
the order of O(N(logN)), based on a typical
distributed-hash-table approach. This assumes
that the number of interactions between nodes

a

b

c

d

e

f

Figure 3. A small network’s cooperatively
connected path measure. The shaded
nodes are defector nodes. Because the
population has six nodes, the total number
of node pairs is 15. However, only the
node pairs {a, b}, {b, c}, {b, d}, {b, e}, 
{b, f}, {c, f}, {d, e}, {d, f}, and {e, f} have 
cooperatively connected paths, so the
CCP measure is 9/15 = 0.6.
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increases linearly with N, as our simulation
cycle specifies. However, the shared-history
approach deals with whitewashing attacks and
so buys increased robustness.

Simulation results
In our simulation experiments, we set the

entire node population to defect and con-
nected nodes in a random network topology.
Any initial network topology, even fully dis-
connected, had no significant effect on the
simulations’cooperative outcomes. However,
if we started our networks in a small-world
configuration (or fully disconnected), high lev-
els of cooperation were produced earlier (in
approximately half as long). So, of the topolo-
gies we tested, random was the worst case. 

Setting all nodes to defect tested whether
SLACER could escape from full defection,
which made us confident of the algorithm’s
robustness to recover from a catastrophic
cooperation failure. When we set the nodes
randomly to defect or cooperate (assigning
50 percent of the population to initially coop-
erate), high cooperation occurred much ear-
lier (in approximately one-quarter of the
cycles, compared to when all nodes defected).
Similarly, if we reduced the number of nodes
that initially cooperated, high cooperation
took longer (assigning 10 percent to initially
cooperate, the number of cycles was approx-
imately halved). Because these results are for
populations that began with all nodes defect-
ing, this gives the worst case.

We measured how long it took for high
levels of cooperation to emerge, and we
stopped when 98 percent of the nodes were
cooperative. We found that cooperation and
topology measures were metastabilized
after this point, randomly oscillating around
mean values. Complete stability isn’t possi-
ble because nodes are always moving and
changing strategies in the network.

When nodes reached high cooperation, we
measured the entire population’s CCP, aver-
age path length, clustering coefficient, and
largest single connected component. For
each experiment, we performed 10 runs with
identical parameters and different pseudo-
random-number-generator seeds. Our analy-
sis took into account the averages and vari-
ances over these runs.

Cycles to high cooperation
Figure 4a shows the number of cycles to

high cooperation from an initial population
of all defector nodes. SLACER takes fewer
than 90 cycles to attain high cooperation

over different network sizes. An existence
proof shows that the algorithm can escape
all defection quickly. We obtained similar
results when we used the asymmetric pay-
offs shown in figure 2c.

Figure 4a shows the size of the largest con-
nected component and the CCP value for var-
ious network sizes after high cooperation
emerges. We obtained high values for both
CCP and the largest component size. Almost
all nodes inhabit a giant connected compo-
nent (GCC) that, although it contains some
defecting nodes, provides cooperative routes
between the large majorities of its members.
SLACER therefore generates cooperative
ASNs. Importantly, the CCP scales well
because as N increases, the CCP doesn’t
decrease. There appears to be no significant
scaling cost in time to high cooperation—

that is, as network size increases, time to
cooperation doesn’t increase.

Basic topological features
We measure the networks’ average clus-

tering coefficient (c) and average path length
(L) after the network has achieved high coop-
eration. The clustering coefficient for a sin-
gle node i is the ratio of the number of cur-
rent links between its neighbors to the total
number of possible links. If zi is the number
of neighbors linked to node i, and yi is the
number of links between neighbors of node i,

We define L as the average shortest possi-
ble path between all pairs of nodes. If d(i, j)
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Figure 4. We examined (a) the average number of cycles to reach high cooperation, 
the largest component’s size as a proportion of population size (the giant connected 
component), and the cooperative connected path measure for various network sizes; 
and (b) the clustering coefficient and average path length after high cooperation emerges
for different network sizes. (For both charts, each point is an average of 10 runs.)



indicates the shortest distance between nodes
i and j in the network,

Figure 4b shows that the networks have a
small-world-like topology, because c is rel-
atively high (compared to a random network)
yet L is low—meaning that most nodes are
connected by only a few hops. L scales-up
log-linearly, indicating that even in very
large networks, most nodes are connected by
short paths. The networks’ degree distribu-
tions appear linear, with approximately 10
percent of nodes having the maximum num-
ber of links and almost no nodes holding zero
links. Many nodes have many links, which
suggests that the networks are more robust
than those displaying power-law distribu-
tions, giving a scale-free topology where
only a few hub nodes have many links.

Typical evolution
Figure 5 shows a time series of a typical

run for a 2,000-node network executing SLACER.
We can identify several distinct stages in
the network’s time evolution before the net-
work reaches high cooperation. First, c
increases rapidly and L increases before
cooperation emerges. This results from a ran-
domized rewiring process, because all utili-
ties are identical. This is sufficient to create
the c and L values we find throughout the run.
Just before cycle 20, via random mutation,
two linked nodes become cooperative—we
call this a seed tribe. Rather than growing

locally, this seed tribe explodes, creating a
kind of sparse cooperative backbone over
the entire network. This spreads cooperation
quickly, leading to rapid predominance of
cooperation. Before seed tribe formation,
nodes that behave cooperatively (via muta-
tion) are punished heavily, gaining the S pay-
off as defector nodes exploit them. 

We observed four stages—random rewire,
seed formation, seed explosion, and satura-
tion—in all the runs. Our previous work dis-
cusses in detail this process through selection
between clusters or tribes.5 Essentially, if
tribes’organization gives their members high
utility, they will tend to recruit more mem-
bers. Tribes that become infiltrated with
defectors will tend to die out because nodes
will move to the tribes that offer better util-
ity. Ironically, by defecting and acting self-
ishly, a node sows the seeds of its own tribe’s
destruction—the defecting node’s initial high
utility leads to it becoming surrounded by
copycat defectors, reducing its payoffs.

Robustness to churn
We also subjected the ASN that SLACER pro-

duced to robustness tests by introducing various
amounts of churn, where old nodes leave and
new nodes join the network. In these experi-
ments, we reset randomly selected nodes to
defect states over various intervals of cycles.
We found that even when 50 percent of nodes
were replaced at one cycle, high cooperation,
the CCP, and the topology structures we previ-
ously observed quickly reformed within a few
cycles. We expected this because SLACER incor-
porates noise in the form of mutation to both

links and strategies, driving its evolutionary
dynamics, and can quickly recover from states
of complete defection and link disconnection.

Different rewire values
We also experimented with different values

of W. We found that when W was higher than
0.9, the CCP started to fall off, producing net-
works that were highly disconnected—a kind
of extreme tribalism. However, when we
reduced W below 0.9, the nodes’cooperation
and the clustering coefficient began to fall. So,
when W = 0.7, we didn’t achieve cooperation
levels above 90 percent of the nodes (with
mean values oscillating approximately 80 per-
cent and c at approximately 0.25). For W =
0.5, cooperation levels never got above 70 per-
cent, oscillating widely approximately 60 per-
cent, with c below 0.2. This indicates a trade-
off; we need high W to get high cooperation
(because this creates the tribes that drive the
process), but if W is too high, we get extreme
tribalism (that is, a disconnected network).
Varying W, therefore, controls the strength of
tribalism or cliquishness.

Probabilistic strategies, asymmet-
ric payoffs, and specialization

We experimented with various payoffs and
strategies for Prisoner’s Dilemma. Probabilis-
tic strategies (where each node stores a prob-
ability to cooperate rather than a binary flag)
produced high cooperation, with most nodes
selecting cooperation with a probability of 1.
(This is similar to previous work, where we
used a SLACER-like algorithm to adapt a gen-
erosity ratio in a simulated P2P file-sharing
system.5) We also used the asymmetric pay-
offs for the generalized Prisoner’s Dilemma
(see figure 2c). We again found that the net-
work obtained high cooperation with no major
differences to the standard Prisoner’s Dilemma
case in the overall results. We applied SLACER

to more complex task scenarios that require
nodes to form tribes of specialists (that is, clus-
ters of connected nodes with distinct roles)
working together to attain high utility. Here we
found not only cooperation and altruism but
also role differentiation that was spontaneously
self-organized in tribes.2

Whitewashing nodes
Whitewashing is a malicious attack strat-

egy in which a node exploits zero-cost iden-
tities by continually changing its identity to
avoid the consequences of malicious behav-
ior. We tested this strategy by running exper-
iments in which some proportion of nodes
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Figure 5. A typical individual simulation run for a 2,000-node network. CCP2 shows the
cooperative connected paths from a different run when we set the payoffs to the
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paths as those shown here for the symmetric payoffs.
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always defected and then immediately
changed identity (for example, by leaving
and then reentering the network and linking
to randomly selected nodes). We found that
cooperation degrades gracefully in the pres-
ence of such nodes—as the number of white-
washing nodes increases, the total amount of
cooperation decreases in approximately the
same proportion. So, even with 20 percent
whitewashing nodes, the network sustains 80
percent cooperative nodes. 

We assumed that whitewashing nodes
wouldn’t respond to other nodes’requests for
utility, strategy, and links because it’s not in
their interest to do so. If whitewashing nodes
communicate these values, this degrades per-
formance much further, with approximately
twice the impact (20 percent of whitewash-
ing nodes sustaining only 40 percent cooper-
ative nodes). In each case, we assume that the
whitewashing nodes don’t communicate or
copy the whitewashing strategy in the SLACER

protocol; it’s not in their interest to do so if
they wish to maximize their payoff. However,
if a whitewashing node did communicate the
whitewashing strategy, this would destroy
cooperation in the network. (We also ran
experiments where nodes lied about utility
and links to other nodes to further maximize
their utility, and we found similar results.)

Of course, even if whitewashing strategies
didn’t spread in the SLACER protocol, they
could spread by an out-protocol means, such
as friends communicating a hacked white-
washing client. As we’ve shown, even under
these conditions the system can tolerate
numerous whitewashing nodes without
breaking down. However, it would be in the
system exploiters’ interest to limit the spread
of such a hacked client. For example, the
deployed BitTorrent system operates well
despite being wide open to whitewashing.

So, although SLACER is vulnerable to white-
washing, this might be tolerable given our
assumptions about user behavior. Of course,
this is debatable, and in a highly hostile envi-
ronment, our assumptions wouldn’t hold.

SLACER is a step toward potentially very
useful lightweight P2P protocols that

self-organize and sustain coordinated, con-
nected networks without a shared-history
system. Because all nodes are essentially
strangers, the system benefits from low over-
head and ease of implementation without
maintaining distributed data structures for
shared histories or having to log interactions.

SLACER imports an evolutionary dynamic
into the protocol itself such that application-
level variants (such as the strategy, which
we could implement as mobile code) are
automatically copied between nodes to
improve performance. This produces a self-
organizing, group-like selective process
that supports both general cooperation and
other group-functional coordination behav-
iors—for example, specialization in a cluster
of nodes,2 where complementary resources
(nodes with complementary functions or
skills) are brought together cooperatively to
solve a collective problem.

Although whitewashing nodes can exploit
the protocol, our out-protocol assumptions
suppose that they don’t spread. The protocol
shows a graceful degradation of performance
in proportion to the number of whitewasher
nodes present. The protocol is also vulnera-
ble to other attacks, such as Sybil, where one
node accumulates many links by adopting
multiple identities. However, for a network
of millions of nodes, such attacks would
require huge resources.

We aimed to produce a simple generaliz-
able coordination protocol that scales well
and functions under reasonable attack
assumptions rather than a watertight solution
that would introduce overheads. SLACER pro-
duces networks with many desirable proper-
ties of human social networks. Where exist-
ing protocols require human social networks
as input,7,8 you might be able to use SLACER

instead. This would require that the applica-
tions supply suitable utilities and that our out-
protocol assumptions hold.
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