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Applying a Socially Inspired Technique (Tags) to
Improve Cooperation in P2P Networks

David Hales and Bruce Edmonds

Abstract—1In this paper, we focus on the problem of maintaining
significant levels of cooperation in peer-to-peer (P2P) networks of
selfish adaptive peers. We propose a simple algorithm that main-
tains high levels of cooperation in such a network while performing
the collective task of file sharing. The algorithm is adapted from
novel “tag’” models of cooperation that do not rely on explicit reci-
procity, reputation or trust mechanisms. A sequence of three sim-
ulation models is presented—starting with an abstract model of
tag-based cooperation (TagWorld) and finishing with a P2P file-
sharing model (FileWorld) that puts the technique to work. From
analysis of extensive computer simulations, we demonstrate the
technique to be scalable, robust, and decentralized; it requires no
central servers or authorities. The algorithm is relatively simple:
peers do not need to store additional trust information about other
nodes or to perform significant additional processing.

Index Terms—Commons tragedy, networks, peer-to-peer (P2P)
systems, self-organization, tags.

1. INTRODUCTION

OMPUTATIONAL simulations of social phenomena
are a fertile source of ideas for computational systems
in general—especially where those systems are not under
central control, but composed of many autonomous (or simply
unknown) parts. One such phenomena is the “Tragedy of the
Commons” [1] where, although everybody may greatly benefit
from a common resource, it is destroyed through the selfish
actions of each person. These sorts of situation are well studied
in the social sciences since they occur in many situations
in naturally occurring social systems (e.g., overgrazing on a
common plot of land or polluting the environment). Starting
from [2], there have now been many computational models to
explore ways out of these dilemmas. In this paper, we explore
how one particular solution to such “tragedies” may be applied
to solve a similar situation in peer-to-peer (P2P) systems. This
involves an algorithm that employs the recognition of arbitrary
externally detectable attributes, which are called “tags.”
Recently, a number of novel cooperation models based on
this “tag” mechanism have been presented [3]-[6]. They were
designed to explore theories of cooperation and coordination in
the social sciences. We show how they can be applied to produce
efficient P2P networks.
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We migrate the “tag” mechanism from a social science-ori-
ented model to a practically inspired P2P file-sharing model. In
order to achieve this migration, we present a sequence of three
models moving from the initially abstract model to the final ap-
plied simulation model.

The initial model, TagWorld (Section III), demonstrates the
emergence of cooperation in a population of evolving agents
that interact randomly in pairs to play a cooperation game called
the prisoner’s dilemma (PD) game. The second model, Net-
World (Section IV), adapts the TagWorld by situating interac-
tions between neighbors on a dynamic graph topologically sim-
ilar to a P2P network. In the final model, FileWorld (Section V),
we maintain the graph topology but change the task from the PD
game to file sharing.

As we adapt the models, we check that we preserve the de-
sirable scalability and robustness properties of the initial model
while still emerging the required level of cooperation.

After presenting the models and simulation results, we com-
pare related work (Section VI) and conclude with a brief discus-
sion (Section VII).

In the next section, we introduce the motivating problem,
how to control selfishness in P2P systems, and our general
method—drawing on existing social simulation models.

II. SOCIAL MECHANISMS FOR P2P SYSTEMS

Social scientists have always been interested in complex, self-
organizing, emergent systems because their target is naturally
occurring societies that display these properties.

Recently, a wealth of agent-based computer models of social
phenomena have been advanced [7]-[11]. Such models specify
individual rules followed by multiple agents and the consequent
emergent results when they are executed in a shared environ-
ment. Results often demonstrate properties that would appear
desirable in engineered large-scale distributed systems.

Here then, it would seem, is a developing body of work that
can be used by engineers of self-organizing systems. However,
sociologically inspired models are realized at a high level of
abstraction, which is very different from the application task do-
mains in which engineers are interested. How can the results
from such models be used for the solution of practical engi-
neering problems?

The approach we use here is to move, via a succession of
models, from an initial abstract model to the actual applica-
tion by introducing piecemeal refinements, while preserving the
emergent phenomena of interest [12].

In this paper, we take a sociologically inspired model that
produces high cooperation between selfish entities and develop
two further models that move closer to an application domain,
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P2P file sharing, in which high cooperation is desirable. Our ini-
tial results are extremely encouraging indicating that novel and
useful techniques can be imported from sociologically inspired
models.

A. “Tragedy of the Commons” in P2P Networks

P2P file-sharing systems using unstructured overlay type
networks have become very popular over recent years [13]-[15].
At a given time, millions of users (peers) may be running,
connected over the Internet. Each peer (or node) connects
to some set of known peers and forms a graph structure.
These applications are self-organizing in that peer software is
provided freely for downloading with users deciding when to
download and execute these peers on their hardware. There is
no centralized administration or control and such systems are
open because there is nothing stopping peers from modifying
their software (and hence behavior). In addition, users can
choose to share nothing or only poor quality files. Given
these latter considerations and empirical evidence [13], it can
be argued that a major problem in such applications is to
develop mechanisms that discourage selfish behavior, where
peers download files without uploading them, and encourage
altruistic behavior (sharing high quality files). These kinds of
situations are precisely analogous to “commons tragedies” [1],
since all individuals benefit if all act altruistically but each
has an incentive to act selfishly.

In P2P systems, this problem is evident in many applications,
not just file sharing, e.g., the sharing of processing power or
storage, the passing of messages and performing remote opera-
tions. Hence, techniques that can address the commons tragedy
would appear to have wide applications within P2P systems.

Existing models from the social and biological sciences sug-
gest many possible candidate mechanisms for addressing this
problem, including, reciprocal altruism [2], [16] group reputa-
tion [17], and interaction on fixed topological structures [18]. In
this paper, we focus on a recent novel “tag” model that solves
an abstract form of a commons tragedy without requiring com-
plex algorithms, reputational knowledge, or fixed interaction
topologies.

We start with the abstract model, TagWorld (Section III),
demonstrating how the tag mechanism produces cooperation
and then progressively modifies it and produces two further
models: NetWorld (Section IV) and FileWorld (Section V).
NetWorld situates interaction on a P2P-type network topology.
FileWorld changes the task domain from an abstract game to a
simulated P2P file-sharing task.

III. TAGWORLD MODEL—HOW TAGS WORK

Here we introduce the TagWorld model [3] that demonstrates
a mechanism for promoting cooperation between simple adap-
tive entities acting in a self-interested way. The simulations
show that self-interested agents playing the game, normally
known as, the Prisoner Dilemma (PD), that usually leads to
noncooperation, can instead be made to cooperate by the use
of tags. The results from the TagWorld experiments serve

as the foundation upon which further experiments are per-
formed—firstly, to a networked, and then, to a P2P scenario, in
which the tag technique is used as a mechanism to incentivize
cooperation.

In the remainder of this section, we introduce the PD game,
then the “tag” concept, then the model and results.

A. PD

The PD game captures a situation in which there is a contra-
diction between collective and self-interest. It can be considered
as a minimal and abstracted form of a commons tragedy. Two
players interact by selecting one of two choices: to cooperate
(C) or defect (D). For the four possible outcomes of the game,
players receive specified payoffs. Both players receive a reward
payoff (R) and a punishment payoff (P) for cooperation and
mutual defection, respectively. However, when individuals se-
lect different moves, differential payoffs of temptation (") and
sucker (S) are awarded to the defector and the cooperator, re-
spectively. Assuming that neither player can know in advance
which move the other will make and wishes to maximize her
own payoff, the dilemma is evident in the ranking of payoffs
T > R > P > S and the constraint that 2R > T+ S. Although
both players would prefer T, only one can attain it. No player
wants .S. No matter what the other player does, by selecting a
D move a player ensures she gets either a better or equal payoff
to her partner. In this sense, a D move cannot be bettered since
playing D ensures that the defector cannot be suckered. This
is the so-called “Nash” equilibrium for the single round game,
hence, an ideally rational selfish player would always choose D.
It is also an evolutionary stable strategy (ESS) for a population
of randomly paired players, where reproduction fitness is pro-
portional to payoff, hence, evolution also selects D [19].

Therefore, the dilemma is that if both individuals selected a
cooperative move they would both be better off but both evolu-
tionary pressure and ideal “rationality” result in defection.

B. Tags

Tags are markings or social cues that are attached to individ-
uals (agents) and are observable by others [20]. For example,
people may be able to tell whether another is of the same
social group as them by observing the style of clothes of the
other—such subtle external indicators, where they have no
other function, are their tags. These tags are often represented
in computational models by a single number or a bit string;
they evolve like any other trait in a given evolutionary model.
The key point is that the tags have no direct behavioral impli-
cation for the agents that carry them. However, through indirect
effects, such as the restriction of interaction to those with the
same tag value, they can evolve from initially random values
into complex ever changing patterns that serve to structure in-
teractions. A number of tag models have been applied to social
dilemma-type scenarios [3], [5], [6], but only the TagWorld
model appears to produce cooperation in the single-round PD
game (i.e., interactions with strangers) and we envisage this
would be something that would be beneficial in our target P2P
application.
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LOOP some number of generations
LOOP for each agent (a) in the population
Select a game partner agent (b) with same tag (if possible)
Agents a and b invoke their strategies and get payoffs
END LOOP
Reproduce agents in proportion to their average payoff

Apply mutation to tag and strategy of each reproduced agent
with low probability

END LOOP

Fig. 1. Pseudocode algorithm for main loop of the model.

C. Description of TagWorld

In TagWorld, agents play the PD in pairs. The model is
composed of very simple agents. Each agent is represented by
a small string of bits. Ongoing interaction involves pairs of
randomly selected agents, with matching tags, playing a single
round of PD. Agent bits are initialized uniformly at random.
One bit is designated as the PD strategy bit: agents possessing
a “1” bit play C' but those possessing a “0” bit play D. The
other (L) bits represent the agents’ tag—a binary string. Tag
bits do not affect the PD strategy played by the agent but they
are observable by all other agents. Fig. 1 gives an outline of the
simulation algorithm used.

Each agent is selected in turn to play a single-round of PD.
Agents do not selected an opponent randomly but selectively
based on the tag string. The opponent is selected randomly from
the subset of the population sharing the same tag string as the
agent. If this subset is empty, because no other agents have an
identical tag, the agent plays against some randomly chosen
partner from the entire population—whatever their tag values.

After each pair of agents plays a game of PD, the payoffs are
accumulated against each agent. When all agents have been se-
lected in turn, and played a game, agents are reproduced prob-
abilistically in proportion to the average payoff they received
(using a “roulette wheel” selection algorithm). With a small
probability, each bit of each reproduced agent is mutated (i.e.,
flipped).

The TagWorld has no topological structure since agents are
not situated in a space—such as a lattice or a ring—interaction
is only structured using tag similarity and random selection.

D. Results From TagWorld

Extensive experimentation varying a number of parameters
showed that for a large enough number of tag bits; high levels
of cooperation quickly predominate in the population. High co-
operation is obtain when there is at least L > 32 tag bits (per
agent) for a population of 100 agents with a mutation rate of
m = 0.001 and PD payoffsof 7' = 1.9, R = 1,P = S =
0.0001. P and S are set to the same small value for simplicity.
If a small value is added to P (enforcingT > R > P > S)
results are not significantly changed. If tags are removed from
the model-making game pairing completely at random, then the
population quickly goes to complete defection—the Nash equi-
librium for the single-round PD.

More interesting still, if all the agents are initially set to select
action D (as opposed to randomly set), then the time required
to achieve a system, where C' actions predominate is found to
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Fig. 2. Visualization of 200 cycles (generations) from a single simulation run
showing cooperative groups coming into and going out of existence. See the text
for an explanation.

monotonically decrease as population size increases. This is an
inverse scaling phenomena: the more agents, the better. Addi-
tionally, the fact that the system can recover from a state of total
D actions to almost total C' actions, under conditions of con-
stant mutation, demonstrates robustness to noise.

The TagWorld produces an efficient, scalable, and ro-
bust solution—based on very simple individual learning
methods—here modeled as reproduction with mutation. How
do tags produce this result? We discuss this in the next section.

E. How Tags Work

The key to understanding the tag process is to realize that
agents with identical tags can be seen as forming an “interaction
group” or “tribe.” The population can be considered as parti-
tioned into a set of such groups. If a group happens to be entirely
composed of agents selecting action C' (a cooperative group)
then the agents within the group will outperform agents in a
group composed entirely of agents selecting action D (a selfish
group). This means that individuals in cooperative groups will
tend to reproduce more than agents in selfish groups because
they will obtain higher average payoffs. If an agent happens to
select action D within a cooperative group then it will individu-
ally outperform any C' acting agent in that group and, initially at
least, any other C' acting agent in the population—remember the
T payoff is 1.9, but the best a C' acting agent can do is R = 1.

However, due to its high payoff, such a D acting agent will
tend to reproduce many copies of itself and then the group to
which it belongs becomes very quickly dominated by the newly
reproduced D acting agents. The group then becomes a selfish
group and the relative advantage of the lone D acting agent is
lost—the group snuffs itself out due to the interaction being kept
within the group. So, by selecting the D action, an agent de-
stroys its group very quickly (remember groups are agents all
sharing an identical tag). Fig. 2 visualizes this group process in
a typical single run. Each line on the vertical axis represents a
unique tag string (i.e., a possible group). Groups composed of
all C action agents are shown in light gray, mixed groups of C'
and D agents are dark gray and groups composed of all D are
black.
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Cooperation

Mutation Factor (f)

Fig. 3. Results from a number of simulation runs. For each run, the mutation
factor (f) is plotted against the level of cooperation. There are 20 runs per
f value: 0, 2, 4, 6, 8, and 10. Slight noise has been added to the x axis for
readability. The solid line is a smooth curve that passes through the average
cooperation value at each f value.

F. TagWorld Discussion

The results indicate that by partitioning the population into
distinct “interaction groups” (or “tribes”) tags facilitate a kind
of “group selective” process in which defection is kept in check.
However, from these results, it is unclear how important the bi-
nary string form of the tags is—does the large string (remember
L > 32 bits for high cooperation) impose some kind of neces-
sary topological structure? Previous experiments with the model
in which the tag was replaced by a single value (a real or integer
number) produced low cooperation so it appeared that the bit
string structure was important. However, after further experi-
mentation, we discovered that the significant factor was differ-
ential mutation between tag and strategy. An artifact of a long
tag string is that, given mutation is applied with equal proba-
bility to each bit; the mutation rate applied to the tag as a whole
relative to the PD strategy is significantly higher. Mutation ap-
plied to the tag as a whole is 1 — (1 — m)L ~ 0.0315 (where
m = 0.001 and L = 32). This means that the effective mutation
rate on the tag is well over one order of magnitude higher than
on the strategy.

In order to test if differential mutation alone produced the
high cooperation we reimplemented the TagWorld model but re-
placed the binary tags with a single real number, allowing tags
to take values between [0..1], and increased mutation on the tag
by a factor (f) relative to the strategy bit. We experimented with
different values for f and found that indeed a high f produced
high cooperation whereas a low f gives low cooperation. Typ-
ical results are shown in Fig. 3. Notice that cooperation comes
in three phases—a low phase with f < 4, a high phase with
f > 6, and an uncertain phase between the two, where the pop-
ulations can go into either high or low cooperative regimes de-
pending on initial conditions and ongoing stochasticities (i.e.,
different numbers from the pseudorandom number generator in
each run).

Minimally, these results indicate that there is nothing special
about binary strings of tags; rather, it is differential mutation
that is important. The tag needs to change faster than the
strategy. Intuitively, this makes some sense, the mechanism
of cooperation is driven by cooperative groups forming more
quickly than defectors can invade and destroy them. With high

mutation on the tag, a cooperative group, as it grows, will tend
to spawn more new cooperative groups. A group containing
defectors does not grow and quickly deflates and dies (as
discussed above).

We wish to move these desirable cooperative properties into
a scenario that is closer to our target P2P file-sharing applica-
tion. We begin this process by implementing a new model in
which we transplant the PD interactions onto a graph or net-
work topology as a first step toward our P2P application. Will
cooperation still be produced if interactions occur on a network?

IV. NETWORLD MODEL—FROM TAGS TO NETWORKS

We now consider how to translate the cooperation producing
tag mechanism from TagWorld, where there is no topological
structure, into a network topology. We represent the network
as an undirected graph in which each vertex represents a node
and each edge represents a link between nodes. We assume each
node has a fixed capacity (a maximum degree) of links defining
its neighbors (a neighbor list).

The underlying mechanism driving cooperation within the
TagWorld is the formation and dissolution of sharply delineated
groups of agents (identified by sharing the same tag). Each agent
could locate group members from the entire population. Each
member of the group had an equiprobable chance of interacting
with any agent in the population sharing the same tag. In this
sense each agent could determine which agents were in their
group and always selected an in-group agent to play PD with if
this was possible.

If we consider a sparse P2P network in which each node (or
peer) knows of some small number of other nodes (neighbors)
and those neighborhoods are highly interconnected (clustered)
such that most neighbors share a large proportion of other neigh-
bors then we have something similar to the tag-like groupings
(or tribes) in TagWorld. Instead of a tag (an observable marker)
we have an explicit list of neighbors. In a highly clustered net-
work the same list will be shared by most of the neighborhood.
In this sense, one can visualize the table of known peers (the
neighbor list) stored in each node as something similar to a tag.
It is shared by the group and is the key by which the group can
directly interact with each other. To this extent, it defines a group
boundary. A nice feature of this way of defining group bound-
aries is that it offers a watertight method of isolating nodes into
their neighborhoods since nodes cannot directly interact with
other nodes that they do not know of (i.e., that are not in their
neighbor list).

Initially, we will consider only direct interactions between
neighbors in our network model. If cooperation can be estab-
lished between the majority of neighborhoods in a network then
it follows that any pair of nodes in the network that are indi-
rectly connected will have a good chance of being able to find
a path of cooperation through the network. In order to capture
this kind of neighborhood interaction in the simplest possible
way, we have each node in the network play a single round of
PD (see above) with a randomly chosen neighbor. No informa-
tion is stored or communicated about past interactions and the
topology is not fixed (see below).
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Fig. 4.

(d)

Ilustration of replication and mutation as applied in the ERA. Shading of nodes represents strategy. In (a), the arrowed link represents a comparison of

utility between A and F. Assuming F has higher utility, then (b) shows the state of the network after A copies F’s links and strategy and links to F. A possible result
of applying mutation to A’s links is shown in (c) and the strategy is mutated in (d).

A. Evolutionary Rewiring Algorithm (ERA)

In the TagWorld model change was produced over time by
mutation and differential reproduction based on average payoff.
How can these be translated into the network? The interpre-
tations placed on previous tag models have been biological or
cultural [3], [20]. However, in NetWorld we do not view nodes
as “reproducing” in a biological or cultural sense. We translate
this process into the network by allowing nodes to “move” or
“rewire” within the network. It is consistent with our initial as-
sumptions that nodes may relocate to a new neighborhood in
which a node is performing better. That is, we assume that peri-
odically nodes make a comparison of their performance against
another node randomly chosen from the network. Suppose node
1 compares itself to j. If 5 has a higher average payoff then
1 erases its neighbor list, and strategy, and copies the strategy
and neighbor list of j also adding 7 into its list. This process of
copying can be visualized as movement of the node into a new
neighborhood that appears more desirable.

Mutation in the TagWorld model was applied after reproduc-
tion. Each bit of the tag and the strategy was mutated (flipped)
with low probability. Since we are using the same one bit
strategy we can apply mutation to the strategy in the same way.
We therefore flip the strategy bit of a node with low probability
(m) immediately after “reproduction” (the movement to a new
neighborhood as described above). Since we treat the list of

neighbors in each node as the “tag,” a mutation operation im-
plies changing the list in some way. However, we cannot simply
randomly change the list; we need to change the list in such a
way as to produce an effect that closely follows the functional
effect when mutation is applied in the TagWorld model. In that
model, tag mutation tended to give agents unique tags, i.e., tags
not shared by other agents at that time. However, agents could
interact with a randomly chosen agent with nonmatching tags if
none existed with identical tags. In this way, tag mutation lead
to the founding of new tag groups. In the network model, we do
not want to isolate the node completely from the network, oth-
erwise, it will not be able to interact at all. Neither do we want
to move into an existing neighborhood (as with reproduction),
but rather to do something that may initiate the founding of a
new neighborhood. So, we pragmatically express tag mutation
as the replacement of the existing neighbor list with a single
neighbor drawn at random from the network.

We now have analogues of reproduction and mutation for the
network model. Reproduction involves the nodes copying the
neighbor lists and strategies of others obtaining higher average
scores. Mutation involves flipping the strategy with low prob-
ability and replacing the neighbor list with a single randomly
chosen node with a low probability (see Fig. 4).

Perhaps the biggest shift we have made here is in the
group-level topology. In the TagWorld model, groups had
distinct boundaries (those sharing the same tag) and interactions
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LOOP some number of generations
LOOP for each node (/) in the population of size N
Select a game partner node (j) randomly from neighbor list
Node i and jinvoke their strategies and get payoffs
END LOOP
Select N/2 random pairs of agents (J, j)

Copy neighbor list and strategy of higher scoring node to lower
scoring node

Apply mutation to neighbor list and strategy of each copied
node with probability m

END LOOP

Fig. 5. Outline pseudocode algorithm of the NetWorld simulation main loop.

was strictly within groups. Here, groups may overlap since
neighboring peers will not necessarily share the same neighbors.
In this sense the group boundaries are no longer absolute. This
change could be significant and may destroy the cooperation
process. For example, a previous tag model of altruism [5],
[21] with overlapping and changeable group boundaries is not
able to solve a social dilemma such as the PD [22].

In the next section, we describe the NetWorld model and then
give results of simulation experiments. We find that although
significant properties of the cooperation process are changed;
scalable, robust, and high cooperation is still produced.

B. Description of NetWorld

The NetWorld model is composed of a set N of nodes (or
peers). Each node stores a list of other nodes it knows about (we
term this the neighbor list). The entries are symmetrical between
neighbors (i.e., if node ¢ has an entry for node 7 in its list then
node 5 will have node 7 in its list). Hence the nodes and links in
NetWorld form an undirected graph.

In addition to the neighbor list, each node stores a single
strategy bit indicating if it is to cooperate or defect in a single
round game of the PD. Neither the strategy bit nor the list is
normally visible to other nodes. Initially, nodes are allocated a
small number of neighbors randomly from the population. Pe-
riodically, each node selects a neighbor at random from its list
and plays a game of PD with it. Each node plays the strategy in-
dicated by its strategy bit. After a game the relevant payoffs are
distributed to each agent. Periodically, pairs of randomly chosen
nodes (i,7) compare average payoffs. If one node has a lower
payoff, then the strategy and neighbor list from the other node
is copied (effectively moving the lower scoring node to a new
neighborhood). Mutation is applied to the strategy with proba-
bility m and to the neighbor list with probability m f. In all cases
given here f = 10. Therefore, the mutation on the neighbor
table is one order of magnitude higher than on the strategy. We
take this from our analysis of relative mutation rates in the pre-
vious TagWorld model. Mutation of the strategy involves flip-
ping the bit. Mutation of the neighbor list involves clearing the
list and replacing it with a single randomly chosen node from
the population. Fig. 5 gives an outline pseudocode algorithm of
the NetWorld simulation main loop.

The neighbor lists are limited in size to a small number of en-
tries. If a link is made to a node that has a full neighbor list then
it discards a randomly chosen neighbor link in order to make
space for the new link. If a node is found to have no neighbors
when attempting to play a game of PD (this can happen if all
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neighbors have moved away), then a randomly chosen node is
linked to and made a neighbor.

C. Results From NetWorld

Figs. 6 and 7 give some typical results up to N = 2 x 10%,
Similar results were obtained up to N = 10°. In these exper-
iments, the mutation rate was m = 0.001 and the PD payoffs
were as previously described in the TagWorld model. Notice that
although there appears to be no scaling cost, with convergence to
high cooperation taking approximately the same number of cy-
cles for different NV, we have lost the reverse scaling cost prop-
erty observed in the TagWorld model. Interestingly, when the
mutation factor (f) was decreased to 1, making mutation rates
equal for links and strategy, high cooperation still occurred but
the time to reach it did not scale. We found what appeared to be
an exponentially increasing nonlinear upper bound scaling cost
(in time). This meant that some runs were not converging after
thousands of cycles for large N(>10000). We still, therefore,
need the high mutation rate on the links to produce scalable re-
sults but the relationship of the mutation factor (f) to the results
has changed. If we could understand fully why these scaling
costs have changed over the TagWorld model then a deeper un-
derstanding of the mechanisms related to scaling costs could be
gained. Currently however, this requires further analysis and we
leave this for future work.

D. NetWorld Discussion

The PD task, used in NetWorld, although capturing a minimal
form of a commons tragedy, is rather abstract. The behaviors
and coordination required is trivial, although the dilemma itself
is not trivial. In order to test if the results obtained so far can be
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carried over into a less abstract task domain we apply the same
basic NetWorld algorithm in a new model, FileWorld, which
implements a P2P file-sharing scenario.

In the next section, we present the model and results. We find
that we can indeed use the basic rewiring technique to produce
nonselfish file sharing at the network level even when nodes
act selfishly at the individual level. We also note a number of
important issues that moving from the PD game to something
more realistic raises.

V. FILEWORLD MODEL—FROM PD TO FILE SHARING

In this section, we apply the ERA algorithm from NetWorld
and test it within a more realistic simulation of a P2P network.
Thus, we outline the results of applying the evolutionary node-
rewiring algorithm used in NetWorld in a simulated P2P file-
sharing scenario [24], [29]. It models a flood-fill query process
where nodes periodically generate and forward queries to their
neighbors. Neighbors either process the queries, by producing a
“hit” or forwarding to all their neighbors, or ignore them—de-
pending on their capacities and internal state variables.

A. Simulated P2P File-Sharing Scenario

The idea behind this scenario is that there is a P2P network
where nodes are linked to a limited number of the other nodes
(their neighbors). Nodes can generate queries (requests for a
certain file) that are then sent to neighboring nodes (if the re-
ceiving node has spare capacity to do so), which then send it to
their neighbors etc. up to limited number of “hops.” If a node re-
ceiving the query has the file asked for, and has spare capacity,
it sends the file to the node that generated the query.

This is simulated with a network of N nodes, each of which
has a list of its links (all links are bidirectional). Each node, 7,
has an answering power A, and a questioning power Pi. These
numbers represent the capability of a node to answer queries
and generate queries. A7 + Pi = (', the capacity of the node.
The measurement of satisfaction of the node is a utility: U+z. The
idea is that nodes will adapt the balance between Ai and Pi
according to the level of Ui—that is they will change P7 (and
hence A1) to increase their Usi.

B. Adapted ERA

After each time period (that is, after N - C node firings) the
ERA, as used in NetWorld above, is applied. N/2 pairs of nodes
(i, 7) are selected from the population at random with replace-
ment. If Uiz > Uy, then node j drops all existing links and
copies node ¢’s links and additionally links to node  itself. Also,
Pj is set to Pi (copying the query-handling behavior of 7). If
Ui < Uj then the mirror process is performed (¢ copying j).
In the case Ui = Uy, then a randomly selected node (¢ or j)
is designated “winner” and the process proceeds as if that node
had a higher U value.

For the experiments presented here, we used a utility (U)
value equal to the total number of hits obtained by a node in
the time period. Obviously, this would tend to be higher if P
was higher (generating more queries). We used the utility value
of total hits (per node) since this gives an apparent incentive
for freeloading—acting selfishly by generating queries but not

answering them. If the average hits per query is used there is
no commons tragedy—because nodes wont generally increase
their utility by performing more queries.

After any node ¢ copies another node 7, it applies mutation
with low probability to the links and the Pz value. With prob-
ability m, Pt is changed to a random value selected uniformly
from the range [0..1]. With probability 10 m the links from 7 are
removed and replaced with a single link to a randomly chosen
node from the population.

C. Description of FileWorld

Each node : is defined by three state variables: an answering
power Ai, a questioning power Pi and a capacity Cz. Both Az
and P are real values in the range [0..1]. C'i takes some cardinal
value greater than zero. The values of each variable quantifies
the behavior of a node over some unit of time ¢. C'z indicates the
capacity of the node, given as total number of queries. When a
node generates or answers a query this takes one unit of capacity.
P gives the proportion of the capacity C's that will be allocated
to generating new queries. Conversely, 1 — P+ of the capacity
will be allocated to answering queries from other nodes. The
answering capacity, Az, gives a probability that a node can di-
rectly match a query—producing a hit. It represents, indirectly,
the amount and quality of files served by the node. For the ex-
periments given here, all nodes have fixed values of Az = 0.4
and C'v = 100, but we allow Pt to be adapted by the node.

Over a single time period, each node ¢ may process a total of
C1 queries. This capacity is divided between generating Pi - C'i
new queries (passed to neighbor nodes) and reserving enough
capacity to process (1 — Pi)C'% queries from neighbors. Pi
therefore represents a measure of selfishness. If Pi = 1, then
node 7 uses all its capacity to generate new queries—ignoring
queries from neighbors. If Pi = 0, then ¢ uses all its capacity
processing queries from neighbors—generating none itself.

In a simulated time period, C - N nodes
(N = node population,C = 100, the same as each
Ci) are selected randomly from the population, with
replacement, and “fired.” If a fired node still has the capacity
to generate queries, it generates one query and passes this to
its neighbors, otherwise, the node takes no action. When a
node ¢ receives a query, if it has spare capacity, it processes
the query. With probability A7 a “hit” is produced for the
query. If no hit is produced, the query is passed to the neighbor
nodes of 7. If a node has no capacity left to process a query
it is ignored—no action is taken and the query is not passed
on. Queries are not passed on indefinitely but have a preset
time-to-live (TTL) after which they are ignored by all nodes.
In all experiments presented here TTL = 3, which means
that queries never get more than a maximum of three nodes
depth from the originating node. The process of firing nodes in
random order with replacement introduces noise in the form of
some nodes firing more often than others and some nodes not
being able to generate their full quota of queries. We view this
as reasonable since it introduces realistic kinds of noise such as
nonsynchronized nodes with differential processing speeds etc.

For the purposes of simulation we represent the network as
an undirected graph in which the degree of any node is fixed
at a maximum value (20 in all cases). When any operation
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requires a further link from a node, the node simply deletes a
randomly chosen existing link and continues with the new link
operation. We experimented with various initial topologies for
the graph, including randomly connected, lattice, “small world”
and completely disconnected. All produced similar results to
those presented here. We also experimented with different initial
P values. Again, we found we obtained similar results (even
when all P values are initially set to zero). Essentially then,
we found the results obtained were insensitive to the initial
conditions of the network. The results given, unless otherwise
stated, start with initially random graphs and randomly selected
P values.

D. Results From FileWorld

In order to gain a baseline benchmark that measures how
the network behaves without the application of the evolutionary
rewiring algorithm, we ran, and averaged over, ten trials (each
an average over initial ten cycles) on static networks with ran-
domly initialized topologies and P values. We did this for a
number of network sizes N = [200..51200]. All other values
were kept as previously described. Since in the static case the
network does not change, the averaging over ten cycles is done
to smooth out the stochasticities of the model. Averaging over
ten different trials (with different pseudorandom number seeds)
gives us a sample of different initial random network topologies
and P values.

We considered the following two measures for bench-
marking: the average number of queries generated per node in
a cycle (nq) and the average number of hits per node generated
per cycle (nh). We found that the baseline level for these
measures was, with low variance, nqg = 49.45 and nh = 20.13
in all cases. Calculating nh/ng gives an average hit rate per
query generated =0.41. We might expect nqg = 0.5 since the P
values are selected uniformly randomly but this slightly lower
value is a result of the (random selection with replacement)
method of firing nodes as described earlier.

Given these baseline values for ng and nh we can investi-
gate the effect of applying the ERA. If results give a consis-
tently higher number of hits (nh) by keeping the number of
queries generated (nq) low then ERA is suppressing the self-in-
terest of the nodes and thus benefiting the network as a whole.
Fig. 8 shows a time series for a typical run for a network of size
N = 10* with ERA enabled. As can be seen, over time, nq de-
creases and nh increases. Notice also that initially these values
move in the opposite direction, indicating an initial favoring
of selfish behavior, but this is soon corrected. This shows that
the evolutionary process (forming cooperative groups within the
network) takes a few cycles to get started from the initially ran-
domly initialized network.

Fig. 9 shows nq and nh measures averaged over cycles 40-50
for different network sizes with ten independent runs for each
network size. Notice that as the size of the network increases the
variance of the individual runs decreases, which indicates that
larger networks are less sensitive to ongoing stochasticities and
initial conditions, since we are using average values this appears
intuitive. Fig. 10 shows the numbers of cycles before high hit
values are attained (when nh > 30). Again, ten independent
runs are shown for various network sizes. As before the variance
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Fig. 10. Cycles required before high hit values (nh > 30) are attained. Ten
independent runs for each network size are shown.

of results decreases as network size increases and there is no
significant increase in the number of cycles required for larger
networks—suggesting that ERA scales well in this scenario also
(i.e., there is no cost for larger networks).

E. FileWorld Discussion

Our initial experiments with the FileWorld model suggest
that ERA does indeed control the self-interest of the nodes by
keeping down the number of queries generated and hence in-
creasing total hits. We appear to have preserved the zero scaling
cost properties from the NetWorld model. This implies that the
ERA has, at least some, general applicability—it performed
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well without changing the basic algorithm for the FileWorld
task domain.

Although the ERA performs well in the FileWorld domain,
this is currently a rather generous task domain. By fixing the
answering power of each node to a relatively high level (40% of
queries can be answered), we simulate a “file rich” environment
[23]. It would be of interest to perform experiments with an ini-
tially reduced answering power or add a cost to nodes having
high answering powers (diminishing utility in some way) and
allow them to adapt in the same way as their links and ques-
tioning power. Under those conditions, would the system still
produce high hit rates?

In addition, we have not explored, in depth, the kinds of
topologies produced in the NetWorld or FileWorld domains. In
both of these scenarios, a network disconnected into a number
of components will still produce respectable functionality
(since long range routing is not a requirement of these task
domains). In future work, we may refine the task domain to
include long range routing between distant nodes.

Our initial investigations of NetWorld and FileWorld topolo-
gies shows that networks tend to form into disconnected compo-
nents that constantly grow and reform (rather like the tag groups
in TagWorld). Interestingly, since the network is in constant flux
it would appear that forms of “temporal routing” might be ap-
plicable for long-range task domains [21].

VI. RELATED WORK

The mechanism we apply is distributed; each node only has to
concern itself with its own interactions. In this way, it contrasts
to centralized systems of trust that could provide similar kinds
of functionality [26].

ERA bears similarities to the more complex “SLIC” algo-
rithm [23]. In SLIC (from which we adapted our FileWorld task
scenario) “incentive structures” are explicitly programmed into
the nodes. Each node monitors the service it receives from its
neighbors and updates weights which moderate the future ser-
vice it offers to others. There is therefore explicit retaliation
programmed into the model—similar to that applied in actual
deployed peer applications [27]. If a neighbor is acting self-
ishly then the node will detect this and cease to share with that
neighbor. Thus, each node has to maintain a list of information
about all of its neighbors.

In the FileWorld model, the “incentives” effectively emerge
from the dynamic behavior of the nodes (moving in the network)
rather than being explicitly programmed in. Nodes therefore do
not need to monitor or store the performance of others—re-
ducing overheads. In addition, in SLIC [23] simulations are only
applied to scenarios in which single “probe nodes” behave self-
ishly—nodes do not adapt their behavior to increase their utili-
ties network wide. Consequently, it is not clear how that model
would react when all nodes are acting selfishly rather than just
a small number (however, this is mentioned as future work).

The APT protocol [28] compares closely with SLIC and
ERA. In APT, the nodes explicitly store trust values based on
past interaction and move within the network to maximize these
trust values rather than a measure of selfish utility (such as
the number of high quality files personally downloaded by the

node). In this latter sense, the nodes are programmed to act in a
nonselfish way. However, APT is shown to be effective against
a number of attach scenarios in which selfish or malicious
nodes enter the network and to produce efficient topologies
based around content level semantic clustering.

Previous models inspired by game theoretical approaches
offer some similar insights [29]. This work relies on there
having being a sequence of interactions in the past so that it
is possible to remember what occurred in past interactions
between the same entities, i.e., the tit-for-tat strategy (in which
you cooperate if they did in the past) in the iterated PD [2],
[16]). However, neither the P2P network topology nor the
strategies are modeled there. Such iterated strategies require
on-going interactions with recognizable individuals—our
model does not rely on this since it is based on mechanisms
that work well in the single-round game—allowing interactions
with strangers.

Our model bears some comparison to the social simulation
of leadership dynamics presented in [30]. In these dynamics,
clusters and chains of high cooperation form around so-called
“leader agents” in a simulated social network. Since such agents
can break links with noncooperating neighbors they can be
viewed as “leaders” moving large subnetworks of cooperative
“followers” to better locations in the social network. However,
this model is deterministic and relies on agents knowing the
strategies of others when moving. In addition, like the Net-
World model, presented previously, interaction is only between
immediate neighbors—there is no indirect interaction through
intermediate nodes.

VII. CONCLUSION AND OPEN ISSUES

The desirable properties from novel tag models [3], [4],
[6] have been carried over into a P2P file-sharing scenario.
The ERA algorithm potentially offers a generally applicable
mechanism for controlling selfish behavior in many possible
P2P task domains without the need to program and test explicit
incentive mechanisms for each domain. In this paper, the ERA
algorithm effectively emerges an incentive mechanism from the
selfish moving behavior of the nodes. This happens because,
although it may do well for a while, a very selfish node will
tend to lose neighbors as they find other nodes that are members
of more cooperative groupings and hence have higher utilities.
Additionally, selfish nodes doing well (exploiting neighbors) are
a signal for copycats to latch onto them and their neighborhood
and exploit it—speeding up the dissolution of the cluster.

We have moved closer to our target, P2P, application by a
progressive succession of models. The results appear encour-
aging and we are confident that further iterations of the process
would lead to a sequence of models finishing in a deployable
implementation.

There are several open issues about adapting a model that has
started life in the social or biological sphere, toward engineering
applicability that need further exploration. These include: how
to capture conceptions of utility and utility comparison; how to
interpret and implement reproduction; how to deal with non-
adaptive agents; and the various methods by which on could
implement random selection in the population.
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Utility is a fundamental concept in much evolutionary mod-
eling. It is assumed that some value or measure can be deter-
mined for each agent that defines its utility or fitness. In the
models described in this paper, the relative simplicity of the sce-
narios means that selecting a utility measure is easy—this may
not be the case for more complex domains. This is especially
true when rewards are delayed. It would be desirable, therefore,
to eliminate a simplistic conception of utility and move toward
a more general “performance targets” arrangement. We have
assumed in our model that agents can freely compare utility,
but this would be problematical in many application domains.
Two possible workarounds are possible; we could abandon max-
imization of utility and apply a satisficing metric. When agents
satisfice they do not change behavior after they reach some as-
piration level of performance. This has some intuitive appeal
and would appear easy to implement but it raises new questions:
how does one determine the aspiration level? How and when, if
at all, should it change? Interestingly, because humans are con-
sidered to often satisfice—rather than optimize, there are bodies
of work, including simulations, exploring this technique going
back to the ideas of Simon [31]. The other potential solution is
for nodes to monitor the performance they receive from at least
two subsets of their neighbors and then drop and replace the
links to the poorer performing neighbor subset.

For simulation models of biological or cultural phenomena,
the idea of reproduction makes sense because successful behav-
iors are copied and increase. However, within an application
domain, such as a P2P system, nodes do not reproduce directly.
It can be claimed [29] that we can model nodes as reproducing
because this captures the notion of human users of systems
installing and using clients that appear to offer desirable re-
sults—fast file downloading say. It is important to realize the
dramatic implications of this interpretation however; it is that
we are no longer modeling potential deployable mechanisms
alone but rather the behavior of a system with humans within
the loop. Currently, there appears insufficient data (although
there is some [13]) to know how humans behave in these
contexts.

This latter problem (that of nonadaptive agents) leads onto
our next major issue—how do you ensure agents (or nodes in our
case) do in fact follow an adaptive process. In our models, we
have assumed all the agents follow the same adaptive process,
but, in a real system, why would they? A robust system cannot
assume this. Our conception of robustness has been that the
system is resistant to mutation on selected components under the
assumption of utility maximization, but what if a subset of the
population simply stopped adapting and acted in a nongreedy
way, ignoring the fact that others were doing better? How robust
would our model be then? This kind of whitewashing behavior
can be explored, in each domain, by running various attack sce-
narios. We intend to test the robustness of the ERA against such
attacks in a number of task domains in future work.

The ERA algorithm presented allows nodes to move around
a network based on self-interest. Nodes are not required to store
any additional information about neighbors or to calculate trust
scores. The ERA makes no distinction between stranger nodes
and those for which there has been ongoing interactions and
therefore is suited to a highly dynamic environment. We find

it promising that such a simple algorithm has performed well
in several simulated scenarios with little or no “tweaking” of
parameters. We aim to develop the algorithm and apply it to a
number of real P2P application task domains based on newly
emerging tools and infrastructures [32].
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