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  Abstract 
 Many peer-to-peer (P2P) applications benefi t from node specialization: for ex-
ample, the use of supernodes, the semantic clustering of media fi les or the dis-
tribution of different computing tasks among nodes. We describe simulation 
experiments with a simple selfi sh re-wiring protocol (SLAC) that can spontane-
ously self-organize networks into internally specialized groups (or ‘tribes’). Peers 
within the tribes pool their specialisms, sharing tasks and working  altruistically 
 as a team – or ‘tribe’ – even though their individual behaviour is selfi sh. This ap-
proach is scalable, robust and self-organizing. These results have implications 
and applications in many disciplines and areas beyond P2P systems. 
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 Simplexus 
 Peer-to-peer (P2P) networks such as 

Kazaa, Gnutella or Bittorrent now account 
for more than a third of everything that 
happens on the Internet. As subcommuni-
ties within the larger Internet, where 
members interact with others who share 
their interests – in downloading music, for 
example, or exchanging other kinds of 
fi les – P2P networks give the Internet a 
‘social’ structure that is every bit as real as 
the social structure in the physical world, 
and just as useful. In principle, such net-
works work like tightly knit communities 
and make the resources of anyone avail-
able to all. 

 In general, each member of a P2P group 
downloads ‘client’ software that acts as an 
interface through which users interact. 
Each user is linked to a handful of others, 
who are their immediate neighbours in the 
network. When a user wants a particular 
fi le, they request it from their neighbours, 
who can supply the fi le, if they have it, or 
pass on the request to their own neigh-
bours. In this way, the fi le may eventually 
be found and returned to whoever request-
ed it. But today’s fi le sharing, of course, may 
only hint at a universe of more sophisti-
cated future applications. P2P networks 
might help people pool their resources to 
provide a data backup service, for example, 
or provide the shared infrastructure for 
distributed computing. In this sense, P2P 
networks probably represent the forerun-
ners of a far more ‘social’ Internet, in which 
users will be able to cooperate and coordi-
nate their activities far more effectively. 

 But making it work in a stable and resil-
ient way won’t be so easy. As David Hales of 
the University of Bologna points out in this 
paper, social cooperation, whether it is 
among social bacteria, chimpanzees or In-
ternet users, always co-exists in a very un-
easy way with potential social dysfunc-
tions associated with cheating. Within a 
P2P network, for example, users have in-
centives to cheat by downloading fi les 
while never helping to supply them to oth-
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 1 Introduction 
 Open peer-to-peer (P2P) networks (in 

the form of applications on top of the In-
ternet) have become very popular for fi le 
sharing applications (e.g. Kazaa 1 , Gnutel-
la 2 , Bittorrent 3 ). However, can such tech-
nology be applied to other computing 
tasks? For example consider a system in 
which some nodes have lots of free storage, 
some high bandwidth and others non-fi re-
walled connections to the network. 

 Those nodes could cooperate to provide 
a data back-up service – something that no 
individual node could provide. Obviously, 
in such a situation, if there is a demand for 
a back-up service we would wish the nodes 
to, somehow, get together and provide the 
service – but how? One solution (and cur-
rently, it would seem, the only viable one 
for deployable applications) is to code the 
process of specialization, coordination and 
cooperation into the protocol directly for 
each different kind required. So for exam-
ple, where semantic clustering of media 
fi les is required for fi le sharing, protocols 
exist that implement it 4  [1]. Where systems 
require supernodes [2], again, these are 
implemented directly. There are two prob-
lems with this approach; fi rstly, for every 
kind of specialization required a program-
mer must envisage this a priori, design a 
protocol, then implement and test it. Sec-
ondly, since this process is complex enough 
on its own, it is generally assumed that 
nodes will follow the protocol – it is rare to 
fi nd protocols robust to node failure, noise 
or malicious behaviour, such as free riding, 
although this is, to a certain extent, true 
within the BitTorrent system [3]. 

 Additionally, it is also rare that nodes 
can spontaneously change their specialism 
if they come to recognize that they might 
be able to do better following a different 
role. The specialism of the node tends to be 

ers. Several years ago, studies of the Gnutel-
la network found just this problem – well 
over half its users were ‘free riders’ and 
never contributed their resources to the 
network. When many free ride, of course, 
those who cooperate naturally lose out and 
have the incentive to become free riders 
themselves. Consequently, free riders po-
tentially undermine the cooperation on 
which social function depends. 

 Yet the main point of Hales’s paper is 
more optimistic – that an imaginative ap-
proach to engineering P2P networks may 
yet provide means for overcoming such 
problems. In human societies, it is often 
the credible threat of punishment that 
tends to deter cheaters. Such mechanisms 
may ultimately also be useful in the P2P 
context. But Hales suggests that it may also 
be possible to achieve cooperation in the 
absence of punishment by designing the 
basic rules by which a network operates so 
that cooperation can be sustained, even if 
some users do try to cheat. Hales and col-
leagues have already shown how this can 
be achieved in the simple context of fi le-
sharing networks. Here he demonstrates 
that the same simple mechanism can also 
be extended to help promote cooperative 
behaviour in more sophisticated scenarios 
of the kind that may ultimately make P2P 
networks more generally useful. 

 In a fi le-sharing network, users would 
like to fi nd fi les they want and download 
them from others. Each person controls 
their links to others and can change these 
links as they like. They can also control 
whether or not they are cooperative. A user 
might be altruistic and happily respond to 
others’ requests for fi les, or be non-altruis-
tic (like a lot of greedy Gnutella users) and 
never lift a fi nger to help anyone else. In 
previous studies, Hales has demonstrated 
that it is surprisingly easy, in this context, 
to engineer cooperation by supplying 
P2P users with a simple strategy for self-
improvement. The idea is to let pairs of 
users occasionally compare their perfor-
mance – the fraction of times their re-

hard-coded or relies on user level switches. 
This kind of approach limits the ability of 
the system to automatically adapt to chang-
ing task scenarios – however, see Mon-
tresor [2] in which supernodes are dynam-
ically allocated to improve performance. 

 Ideally, we would like a more general ap-
proach that could be applied to a range of 
different task domains with minimal tun-
ing. We would like the approach to offer dy-
namic specialization and respecialization 
if nodes come to recognize they could do 
better playing another role and have the 
ability to do so or if the task domain chang-
es requiring different kinds of skills to be 
combined. In addition, we want the system 
to be able to deal with free riders and errant 
or malicious nodes but also to support al-
truistic cooperation between specialists 
when this is required for job completion. 
Finally, we require this to be as scalable, 
self-organizing and robust as possible. 

 In this paper we do not claim to have 
addressed all these issues to the level of de-
ployment; what we propose is, we claim, 
the beginnings of an approach that may al-
low us to address these issues. In the simu-
lated scenarios so far implemented our re-
sults are very encouraging and we plan to 
continue this line of work. 

 In the following sections, we state our 
assumptions concerning behaviour in 
open P2P systems, then we introduce the 
SLAC algorithm in general terms. We fol-
low by formulating a minimal task domain 
scenario called the SkillWorld, to which we 
wish to subject a simulated P2P network 
running SLAC. We then describe how we 
apply SLAC within SkillWorld and present 
some experiments and results. We inter-
pret the results and describe a ‘typical his-
tory’ in the SkillWorld. 

 At the end of the paper we summarize 
what we have observed and what it means. 

      1 
    The Gnutella home page: http://www.gnutella.com. 

  2 
    The Kazaa home page: http://www.kazaa.com. 

  3 
    The BitTorrent home page: http://www.bittorrent.com. See also Cohen [3] for a description of the way BitTorrent works. 

  4 
    For example see the MLdonkey system: http://mldonkey.org. 
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quests actually get answered success-
fully – and to let those doing worse copy 
the behaviour of those doing better; that 
is, to mimic their behavioural stance (al-
truistic or non-altruistic) and also to copy 
their links to other users. 

 It is plausible to assume that if users 
have ready access to such a ‘copy and re-
wire’ tactic, they will probably use it. After 
all, it’s an easy way, selfi shly, to improve 
your own performance. What is remark-
able is that users’ greed, if channelled and 
expressed in this particular fashion, leads 
quickly to the emergence of lots of altruism 
and cooperation. Here is how it works, as 
Hales has discovered in extensive simula-
tions. Suppose everything starts out at ran-
dom, with users mixed in their altruism 
and linked together in some haphazard 
way. Then naturally, some clusters of users 
quite by chance will happen to have more 
altruists than others. Members of these al-
truistic groups will generally do better 
than average, as their neighbours help 
them to fi nd fi les. Consequently, as users go 
about comparing themselves to others and 
trying to copy their way to improvement, 
many will tend to become altruistic and to 
link themselves into this altruistic cluster, 
making it grow. In short, copying and re-
wiring, inspired solely by greedy self-inter-
est, makes altruistic clusters grow and 
spread at the expense of less altruistic clus-
ters, all through an evolutionary competi-
tion between groups with different levels of 
altruism. 

 If this seems a little too good to be true, 
it is, and Hales has also found that such 
‘tribes’ of cooperators cannot last. In his 
simulations, he allowed for occasional ‘mu-
tations’ – for the possibility that users can 
change their behaviour and links to others 
quite at random. As a result, an altruistic 
tribe will eventually get ‘infected’ by a 
cheater, someone who stays linked with the 
group, but who turns non-altruistic. Cheat-
ers immediately make a killing, gaining 
from the altruism of all their neighbours, 
without spending any effort to help them. 

We claim that the results indicate a process 
that has possibly profound implications 
and applications beyond just P2P systems. 

 2 Behavioural Assumptions in 
Open Networks 
 How do nodes behave in open P2P net-

works? Of course, the simple answer is, as-
suming nodes are autonomous:  anyway 
they like to behave!  

 Given this fact, how then do we proceed 
to devise protocols that will lead to desired 
system-level functions? Obviously, we 
have to begin by making assumptions 
about the  likely behaviour  of other nodes 
in the network. Such assumptions should 
be as realistic as possible but also simple 
enough to be practically computable and 
transferable between a number of do-
mains. Assumptions made here are essen-
tially the axioms of a kind of mini  social 
theory  which then informs the design of 
peer software. 

 Many approaches (often unconscious-
ly) inherit assumptions from previous so-
cial sciences (e.g. economics, sociobiolo-
gy, sociology). For example, if we assume 
nodes will behave  ‘rationally ’ in the con-
text of  classical game theory , then we com-
pute ‘Nash equilibrium’; inheriting our as-
sumptions from game theory which is a 
body of knowledge assuming perfect ra-
tionality and perfect information. The ba-
sic approach is to assume that all individ-
uals have perfect knowledge of the game 
being played and all possible outcomes 
along with infi nite computational time 
and common knowledge that all individu-
als are the same in these respects. Given 
these assumptions it is sometimes possi-
ble to analytically derive the ‘Nash equilib-
ria’ of the game being played. The idea is 
that given the previous classical assump-
tions any system will fi nd and stay in a 
Nash equilibrium. However, it is unclear 
that such assumptions hold in dynamic 
open P2P networks and the derivation of 
such equilibria within dynamic topologies 
and changing populations is currently be-

yond state-of-the-art analytical tech-
niques. 

 In the context of sociobiological models 
[4,5], which are based on the evolution of 
behaviours of interacting animals over 
time, the assumption is that behaviours (or 
strategies) reproduce in proportion to 
their average fi tness (utility or score) such 
that fi tter behaviours become more nu-
merous over time. Additionally such mod-
els assume that mutation in the form of 
random changes in behaviour also takes 
place. This  evolutionary game theory  ap-
proach allows for an ecology of behaviours 
to evolve over time. In addition, there is no 
requirement that agents have perfect ratio-
nality or perfect information – just enough, 
such that better performing strategies tend 
to increase in the population. For biologi-
cal systems this occurs via Darwinian evo-
lution where utility equates to fi tness. 
However, P2P networks do not evolve in a 
Darwinian fashion. Nodes do not repro-
duce and it is unclear what ‘fi tness’ means 
in this context. 

 We have shown in recent work that re-
sults from evolutionary models  can  be ap-
plied in networks if we allow nodes the 
ability to ‘copy and re-wire’ within the net-
work to improve their own situation [6–9]. 
This latter innovation demonstrates it is 
possible to import work originally mod-
elled in a conventional evolutionary frame-
work into a dynamic network model. Nev-
ertheless, in the absence of any deductive 
proof of the equivalence of evolution and 
the re-wire rules it is necessary to imple-
ment and test previous mechanisms to de-
termine if the properties of interest can be 
carried over into networks. 

 Summary of assumptions concerning 
open P2P networks: 

 (1) Nodes are in the network for what 
they can get out of it. 

 (2) Nodes modify their behaviours to 
improve their individual benefi t. 

 (3) Nodes have limited knowledge about 
other peers and the network in general. 
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 The fi rst assumption would appear to 
be plausible within open P2P networks. In 
the currently popular fi le sharing networks 
the majority of uses download and run 
peer client software (and hence join the 
network) in order to get something (e.g. to 
download a movie or a music fi le). It cer-
tainly is true that some people would join 
for other reasons. For example, a user may 
join to feel ‘part of an online community’ 
[10] or to distribute only their own content 
– not downloading. Some could aim to 
damage the functionality of the network 
by distributing malicious content. Howev-
er, we argue that neither of these motiva-
tions informs the majority of the nodes. In 
any case, most functions would be  en-
hanced  by purely altruistic behaviour 
(such as distributing content without 
downloading) and we  conjecture  that there 
are at least as many pure altruistic as pure 
malicious nodes in working networks. 

 The second assumption is more prob-
lematic –  who says nodes within a given 
P2P network change behaviours to improve 
their benefi t?  Our argument here is rather 
speculative – if not conjectural. We start 
from the assumption of autonomy and ar-
gue that the function of peer client soft-
ware is  ultimately  under the control of the 
user. For example, users may change oper-
ating system or client software settings 
(e.g. limiting upload speeds), download 
new versions of a peer client (e.g. incorpo-
rating ways to improve download success 
and rates) or simply hack their own code if 
they have the required skills. Of course, a 
hacked client can be distributed to others 
if it appears to have desirable properties 
and will tend to be adopted if it delivers 
those properties to others. We therefore 
claim that currently, this kind of process is 
occurring at the user level – via the adop-
tion of various clients and the control of 
various node-level settings. The problem 
hidden in this assumption is that the space 
of available behaviours that each user can 
choose from varies over time and is also 
dependent on the knowledge of the user, 

One cheater attracts others, and together 
they ultimately undermine the group. So 
tribes naturally come and go. Even so, how-
ever, Hales found that they form so quickly 
that the overall level of cooperation re-
mains high on average – it’s just not always 
the same users who are cooperating. 

 In a real P2P network, of course, no ‘al-
gorithm’ will completely control users’ be-
haviour. They can be altruistic or non-al-
truistic at will, and can even hack into the 
client software and make it do anything 
they like. So it remains to be seen if the 
copy and re-wire tactic, if made available 
in a network, really would promote high 
levels of cooperation. But in the present pa-
per, Hales tackles another issue on the road 
to the practical engineering of P2P coop-
eration by exploring how the copy and re-
wire strategy might be adapted to more 
delicate applications that move beyond 
simple fi le sharing. He does this in the con-
text of a virtual world that he calls ‘Skill-
World’. 

 File sharing networks require only one 
skill – the ability to supply a fi le. In more 
diversifi ed settings, P2P users might want 
to accomplish tasks of many different 
kinds, and so require a range of skills from 
their network partners. SkillWorld models 
this situation. Within it, as in a fi le-sharing 
network, each of N nodes links to a hand-
ful of neighbours. Each can be either al-
truistic or non-altruistic, but each user 
now also has a ‘skill’ type, selected from 
one of fi ve different possibilities. In Skill-
World, users get assigned tasks that they 
need to complete, and to do so, unless they 
luckily have just the right skill, need to lo-
cate a neighbour in the network who both 
has that skill and is willing to share it. In 
simulations of such a network, Hales keeps 
track of the costs and benefi ts of users’ be-
haviour by giving one ‘utility’ point to any-
one who gets one of their tasks completed. 
Meanwhile, the person who had the rele-
vant skill and did the work has to pay out 
0.25 utility points (helping others isn’t 
free). 

the kind of network connection, form of 
operating system and many other related 
factors. However, we note that similar as-
sumptions have provided some insight 
into human sociocultural phenomena at 
least as complex as the sociocultural phe-
nomena of P2P systems [11]. 

 Perhaps a more plausible way of think-
ing about the second assumption is to in-
terpret the space of all available clients in a 
given P2P domain as the space of behav-
iours a user can select from – that is, a user 
may change clients programs, say from 
edonkey to BitTorrent because edonkey is 
too slow for the content they required. The 
user has in fact changed protocol and net-
work completely – but that need not matter 
to them, and in fact the interpretation then 
is an ecology of different networks with us-
ers switching between them. 

 Alternatively, the assumption that be-
haviour can change regularly within a sin-
gle network can be seen as a design pro-
posal to be incorporated into a new proto-
col, rather than an interpretation of existing 
protocols. 

 The third assumption would appear to 
be a necessary one in any large and highly 
dynamic system – it is not practical or pos-
sible to collate accurate global statistics in 
most such systems. 

 3 The SLAC Algorithm 
 In previous work we showed how a sim-

ple ‘copy and re-wire’ rule (or protocol or 
algorithm) could produce high levels of co-
operation within simulated P2P networks 
performing collective tasks. We named this 
algorithm ‘SLAC’ because it uses selfi sh 
link and behaviour adaptation to produce 
cooperation. We showed that nodes in a 
network emerged cooperation when play-
ing the single-round prisoner’s dilemma 
game, under, what we argue, are plausible 
assumptions about the kinds of behaviour 
we fi nd in P2P systems. We also demon-
strated that the same results could carry 
over into a more realistic fi le-sharing P2P 
task domain [6]. 
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 Given the inherent cost to helping, it 
seems unlikely that nodes in this network 
could possibly manage to cooperate. It 
won’t generally pay to be altruistic, as you 
do the work but get no benefi t. But Hales 
found in his simulations that the ‘copy and 
re-wire’ strategy of node self-improvement 
can also build and sustain cooperation in 
this more demanding setting. He started 
SkillWorld with all users set randomly to 
be altruistic or not. Randomly, he gave 
them skills from the fi ve possibilities and 
some links to other users. Users were then 
selected, again at random, and given jobs 
to do demanding one of the skills. As be-
fore, Hales allowed mutations to rarely and 
randomly alter a user’s skill set, altruistic 
stance and network links. He then moni-
tored how the fraction of jobs completed 
successfully changed with time.  

 In general, the only way a node can get 
a job completed, if it doesn’t have the re-
quired skill, is to pass it to an altruistic 
neighbour who does. Hence, a high rate of 
success would imply the emergence of 
large islands or tribes of altruistic nodes, 
which is precisely what Hales found. By the 
time every node had, on average, handled 
a few tens of requests, the level of complet-
ed jobs had reached 90%. Interestingly, 
however, it only worked for networks hav-
ing more than about 1,000 nodes, presum-
ably because network size increases the 
likelihood that an altruistic group will 
form somewhere, by chance, and then grow 
by attracting others. In essence, the forma-
tion of altruistic tribes faces a ‘nucleation’ 
barrier much like that which makes some 
liquid solutions ‘metastable’, though the 
solid crystals grow quite quickly once 
seeded. 

 In his section 5.2, Hales offers a detailed 
look at how precisely such cooperation 
comes about. At fi rst, cheaters prosper, tak-
ing advantage of altruists. But altruists 
leave these groups and begin forming co-
operative groups, which then grow (see his 
fi g. 4). Anyone within this group, if they 
search for a skill, will generally fi nd a 

 The basic algorithm assumes that peer 
nodes have the freedom to change behav-
iour (i.e. the way they handle and dispatch 
requests to and from other nodes) and 
drop and make links to nodes they know 
about. In addition, it is assumed nodes 
have the ability to discover other nodes 
randomly from the network, compare their 
performance against other nodes and copy 
the links and (some of) the behaviours of 
other nodes. 

 As discussed above, we assume that 
nodes will tend to use their abilities to self-
ishly increase their own utility in a greedy 
and adaptive way (i.e. if changing some be-
haviour or link increases utility then nodes 
will tend to select it). 

 Over time nodes engage in some activ-
ity and generate some measure of utility  U 
 (this might be number of fi les downloaded 
or jobs processed etc., depending on the 
domain). 

 Periodically, each node ( i ) compares its 
performance against another node ( j ), 
randomly selected from the population. If 
 Ui  ̂   Uj  node  i  drops all current links and 
copies all node  j  links and adds a link to  j 
 itself. Also, periodically, and with low prob-
ability, each node adapts its behaviour and 
links in some randomized way using a 
kind of ‘mutation’ operation. Mutation of 
the links involves removing all existing 

links and replacing them with a single link 
to a node randomly drawn from the net-
work. Mutation of the behaviour involves 
some form of randomized change – the 
specifi cs being dictated by the application 
domain (see later). 

 Previous ‘tag’ models, from which SLAC 
was developed [8,9,12], have indicated that 
for good scalability properties the rate of 
mutation applied to the links needs to be 
higher than that applied to the behaviour, 
by about one order of magnitude. In the 
context of the algorithm shown in  fi gure 1  
this means that ‘mutation rate 1’  1  1  ‘muta-
tion rate 2’. 

 When applied in a suitably large popu-
lation, over time, the algorithm follows a 
kind of evolutionary process in which 
nodes with high utility tend to replace 
nodes with low utility with nodes periodi-
cally changing behaviour and moving in 
the network. However, as will be seen, this 
does not lead to the dominance of selfi sh 
behaviour, as might be intuitively expect-
ed, because a form of incentive mechanism 
emerges via a kind of ostracism in the net-
work. The process can also be viewed as a 
kind of ‘cultural group selection’ process 
(see later discussion). 

  Fig. 1.  The generic SLAC algorithm. Each node executes this algorithm. 
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neighbour willing to supply it. These suc-
cessful, cooperative groups draw in new 
members and come to dominate the popu-
lation, while at the same time evolutionary 
pressure also leads these groups to have 
well-mixed sets of skills, improving their 
ability to carry out tasks. But success again 
sets the stage for ultimate demise, as these 
cooperative tribes offer prime ground for 
cheaters, who can prosper at the tribe’s ex-
pense. Consequently, as Hales puts it, his-
tory in SkillWorld is ‘the history of the for-
mation, growth and destruction of tribes’. 

 The demise of cooperative tribes is a pe-
culiar feature of the ‘copy and re-wire’ rule 
of node self-improvement, either in the 
fi le-sharing context, or in SkillWorld. Yet 
the perpetually dynamic nature of the co-
operation to which it leads may hold hid-
den advantages in helping the network to 
evolve solutions to new challenges ‘on the 
fl y’. If the needs of the network were to sud-
denly shift so that most jobs required, say, 
just two particular skills, a new tribe would 
quickly emerge with just this set of skills. 
The inherent cooperation set up between 
different groups gives the entire popula-
tion a kind of adaptive talent for pattern 
recognition, as those groups tuned to pres-
ent conditions naturally grow and displace 
others. 

 The copy and re-wire strategy of node 
self-improvement supports the emergence 
of cooperation in a fl exible and even ‘intel-
ligent’ way, and appears to be a promising 
route for engineering the self-organization 
of socio-technological communities. As 
Hales points out, the tribes are in no way 
‘pre-programmed’ into the simulation; 
they emerge quite on their own as nodes 
simply try to get what they want. The tribes 
emerge, in effect, as a crude form of ‘cul-
ture’ that helps nodes coordinate them-
selves to handle tasks they could not han-
dle alone. Further work will be required to 
see how this particular technique fares in 
the context of the full range of human be-
haviour likely to be encountered in any 
real-world P2P scenario, but it is hard to 

 4 The SkillWorld Scenario 
 In order to determine if the SLAC ap-

proach can support specialization within 
tribes we construct an abstract and mini-
mal simulated task domain that requires 
nodes to perform specialized tasks coop-
eratively in order to satisfy their individu-
al needs. We call the task domain Skill-
World and it is an adaptation of a socio-
logically inspired scenario originally given 
in Hales [13]. 

 The SkillWorld consists of a population 
of N nodes. Each node may have zero or 
more links (up to a maximum of 20) to oth-
er nodes. Links are undirected such that 
the entire population can be considered as 
a undirected graph G with each vertex be-
ing a node and each edge being a link. Each 
vertex (or node) is composed of three state 
variables – a ‘skill type’  s   �  {1,2,3,4,5}, an 
‘altruism fl ag’  a   �  {0,1} and a satisfaction 
score or ‘utility’  u   �  R (where R is a positive 
real number). 

 Periodically, with uniform probability, a 
node  i  is selected from the population N. A 
‘job’  J  is then generated marked with a ran-
domly chosen skill  sJ . The skill is selected, 
again randomly with uniform probability, 
from the domain {1,2,3,4,5}. Job  J  is then 
passed to node  i . If node  i  possesses the 
correct matching skill (i.e. if  s  i  =  sJ ) then 
node  i  may process the job itself without 
any help from other nodes. For successful-
ly processing a job  J  the receiving node 
gains one unit of credit:  u     ← u  + 1. 

 This process of generating and passing 
jobs to nodes represents user-level re-
quests for services – such as, for example, 
searching for a particular fi le, performing 
some processing task or storing some data. 
In the SkillWorld we do not represent the 
actual jobs to be done, rather we represent 
the skill required to perform the job. In our 
minimal scenario, each job only requires 
one skill to be completed. 

 But what if node  i  receives a job for 
which it does not have the correct skill (i.e. 
if  s  i   0   sJ )? In this case  i  passes the job re-
quest to each neighbour in turn until all 

have been visited or one of them,  j , agrees 
to process the job  J . A neighbour  j  will only 
agree to process  J  if its skill matches ( s  j  = 
 sJ ) and the altruism fl ag is set ( a  j  = 1) .  If j 
does agree to process the job then this  costs 
j  a quarter unit of utility ( uj   ←   uj  – 0.25)  
 yet  increases  the utility of  i  by one unit 
( ui   ←   ui  + 1). 

 What this means is that node  i  looks for 
an altruistic neighbour with the correct 
skill to process job  J . If  i  fi nds such a neigh-
bour ( j)  it increases its utility  as if  it had 
completed the job itself whereas  j decreases 
its utility . This refl ects the notion that  j  is 
altruistically processing  J  for the benefi t of 
 i  and that users are happy when jobs sub-
mitted to their nodes are completed but are 
not happy when jobs from other nodes use 
their node resources with no immediate 
benefi t to themselves. 

 5 SLAC in the SkillWorld 
 We apply the SLAC algorithm within 

SkillWorld by making the node skill types 
and the altruism fl ags into evolvable state 
variables such that they are copied from 
more successful nodes (based on utility) 
and mutated occasionally with low prob-
ability. 

 Although SLAC has previously been 
demonstrated as successful in promoting 
cooperation in both a prisoner’s dilemma 
playing scenario [7] and a simple fi le-shar-
ing scenario [6, 9] it has not yet been ap-
plied within a scenario requiring intra-
group (or tribe) specialization  in addition 
 to altruism. We are therefore asking a lot 
from a simple algorithm: to self-organize 
the population into altruistic yet internally 
specialized tribes that pass and process 
jobs using their various skills. 

 The SkillWorld is the simplest scenario 
we could think of that captures a process 
of specialization for this initial investiga-
tion. We have a small number of skills (fi ve 
in these simulations) and we only pass jobs 
to immediate neighbours. Each node and 
job is related to a single skill only (rather 
than a subset of skills which would seem 
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imagine that similar approaches, inspired 
by familiarity with the dynamics of coop-
eration in biological and social settings, 
will not become increasingly relevant to 
the engineering of a socially healthy Inter-
net. 

  Mark Buchanan  

more realistic). Also we assume nodes can 
change skills at will (randomly via muta-
tion). This latter assumption might not 
hold if skills relate to physical or unchange-
able characteristics of nodes like storage or 
bandwidth for example. However, at this 
stage we leave more realistic scenarios with 
multi-hop passing and more complex skill 
set arrangements to future work. 

 In order to measure the success of SLAC 
we take a simple measure – the proportion 
of submitted jobs that are completed. We 
can infer that a network in which the ma-
jority of jobs submitted are completed is 

sustaining internally cooperative and spe-
cialized tribes since the only way to com-
plete most jobs is for nodes to pass them to 
altruistic neighbours with required skills. 

 5.1 Some Experiments and Results 
 Initially we ran a set of simulation ex-

periments in which we initialized all nodes 
in the population with uniformly random-
ly selected skills, altruism fl ags and links. 
We experimented with a number of net-
work sizes determining for each how many 
cycles before the high performance was 
achieved. A single cycle is the time unit by 
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  Fig. 2.   a  Number of cycles to high performance for different network sizes. When PCJ  1  90% 
this means that over 90% of all jobs submitted to nodes are completed. Note: Overlapping cir-
cles have identical values.  b    Number of cycles to high performance for different network sizes 
when all nodes are initialized selfi sh ( a  = 0). This can be compared to the random initialization 
results in  chart a . Note that there is a reverse scaling cost here. The results for N = 1,000 are 
worse than shown since three outliers at about 1,000 cycles are not shown here. 

which all nodes will have executed the 
SLAC algorithm at least once, on average. 
In one cycle 10N jobs are submitted to ran-
domly chosen nodes. 

 In order to measure the success of SLAC 
we take a simple measure – the percentage 
of submitted jobs that are completed (PCJ). 
We can infer that a network in which the 
majority of jobs submitted are completed 
is sustaining internally cooperative and 
specialized groupings (or tribes) since the 
only way to complete most jobs is for nodes 
to pass them to altruistic neighbours with 
the required skills. 

 We categorized ‘high performance’ as a 
PCJ  1  90%, we found that in the simula-
tions this was the highest stable value 
reached, and ran simulations until this val-
ue was obtained – recording the number of 
cycles required. Hence, if SLAC was work-
ing well in the SkillWorld we would hope 
that within a small number of cycles the 
PCJ would become high. 

 We used a mutation rate of 0.001 on skill 
type  s  and altruism fl ag  a  (shown in  fi g. 1  
as ‘mutation rate 2’) .  Mutation on the links 
(shown in  fi g. 1  as ‘mutation rate 1’) was an 
order of magnitude higher (0.01). We carry 
over this assumption – that the mutation 
rate on the links should be higher than that 
on the ‘strategies’ – from previous experi-
mental work comparing several different 
scenarios and models [9]. We fi xed the 
maximum number of links between nodes 
to 20. Links are undirected and therefore 
symmetric. If an operation results in a 
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node requiring a new link and it already 
has the maximum then a random link is 
discarded by the node and the new link ac-
cepted. Using this method nodes never re-
fuse new links but may often lose old ones. 
This adds to the noisy and dynamic nature 
of the scenario. 

  Figure 2  shows results from 30 individ-
ual simulation runs. Each point is a differ-
ent run showing the fi rst cycle at which the 
PCJ  1  90%. As can be seen, high perfor-
mance is attained within a few tens of cy-
cles even for networks of size N = 10 5 . No-
tice that there appears to be a very slight 
upward trend in cycles as N increases; 
however, this is negligible – the results 
therefore indicate close to  zero scaling 
cost . This highly desirable property was 
also evidenced in a previous application of 
SLAC to a simulated fi re-sharing scenario 
[6].  Figure 2 b shows results under the same 
conditions except that all nodes are initial-
ized to be selfi sh ( a =  0). This gives a kind 
of ‘worst case scenario’ as far as altruism is 
evolving. It is important to show that the 
system can escape from this, since this 
demonstrates that even if a complete fail-
ure of node altruism should occur (either 
through chance or malicious attacks) then 
the system can recover relatively quickly. 
We notice here the reverse scaling proper-
ties that we originally noticed and ana-
lyzed in a previous ‘tag’ model [12]. Essen-
tially, with bigger populations, there is 
more likelihood of the chance formation of 
a small altruistic tribe. This then goes on 
to ‘seed’ the population with altruism. 5  

 Interestingly, it was found that for popu-
lations where N  !  1,000 high performance 
was  not  produced even when runs were ex-
tended to several thousand cycles. Intui-
tively this is consistent with the ‘group se-
lection’ hypothesis concerning how SLAC 
operates. With small populations there are 
not enough nodes to form enough compet-

ing groups (or tribes) so evolution cannot 
operate at the group level. 

 5.2 History in the SkillWorld – 
Tribal Dynamics 
 One way to convey the dynamics of a 

typical SkillWorld simulation run is to 
describe a typical ‘history’ in narrative 
form – this method is sometimes used in 
computational sociology, particularly in 
work with artifi cial societies [14, 15] car-
ried over from more traditional sociologi-
cal methods of explanation. In the rest of 
this section we give such a ‘typical history’. 
Although we will make general points we 
will also refer to a specifi c single simula-
tion, run given in  fi gure 3 , to illustrate our 
analysis. 

 Initially, the SkillWorld is a random 
graph, all nodes are connected via a few 
hops and clustering is low. Skills and altru-
ism are randomly scattered. Very quickly, 
the graph breaks into a population of many 
disconnected components because nodes 
quickly re-wire themselves to better per-
forming nodes. 

 The better performing nodes are initial-
ly the non-altruists who exploit their 

groups (or tribes) selfi shly. However, this is 
a non-sustainable strategy since this ex-
ploitation causes nodes to leave their ex-
ploited tribes and join tribes in which there 
is less exploitation – nodes in tribes with 
less exploiters in them do better (higher 
utility) because they are cooperating as a 
team. The tribes dominated by non-altru-
ists quickly ‘wither away’ as nodes leave. 
When no nodes are left then the tribe no 
longer exists – in this way  tribes die , even 
though  nodes do not die . This emergent 
property of the birth and death of tribes 
lays the ground for evolution to operate the 
group (tribe) level. 

  Figure 3  indicates the above process oc-
curring in the fi rst 10 cycles or so. Notice 
that the number of selfi sh nodes peaks, 
and the PCJ bottoms out, at about cycle 10. 
The number of components (i.e. tribes) in-
creases in the early phase peaking just be-
fore cycle 20 (representing a peak of 60 
components). 

 Altruistic tribes function well and grow 
as more nodes join, new tribes are occa-
sionally formed as nodes randomly, 
through mutation, split from a tribe. As al-
truistic tribes grow larger they eventually 
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  Fig. 3.  The time series of a typical single run in SkillWorld (N = 1,000). Shown are the number 
of selfi sh nodes as a proportion of the entire population (selfi sh), the PCJ, the clustering coeffi -
cient (C), the number of components in the population (comps, which is normalized by dividing 
by 60) and the average probability that a route exists between any two nodes (conprob). 

  5 
    See Hales [12] for a more detailed explanation of this reverse-scal-

ing cost including the beginnings of an analytical treatment. 
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become ‘infected’ or ‘invaded’ by a non-al-
truist node – either by mutation of an ex-
isting member node or the entering of a 
new node to the tribe. When this happens 
the tribe is quickly destroyed via disper-
sion since a non-altruist will exploit the 
tribe selfi shly and this will lead to many 
more nodes quickly copying that node un-
til the tribe ‘dies’ because all nodes leave it 
– because a tribe dominated by selfi sh 
nodes gives lower utility to  all nodes  with-
in it than one dominated by altruists. 

  Figure 3  shows, from about cycle 20 on-
ward, the above process occurring. A de-
crease in the number of components 
(comps) and an increase in completed jobs 
(PCJ) are correlated with a decrease in the 
number of selfi sh nodes (selfi sh). This is 
because altruistic tribes grow in size – re-
ducing the total number of components 
(comps) and reducing selfi sh nodes (self-
ish). By about cycle 30 selfi shness is very 
low and completed jobs (PCJ) reach a high 
level. Notice that the dynamic nature of the 
formation and dissolution of the tribes is 
refl ected in the variation of the number of 
components over time (comps) after PCJ 
goes high. 

 History in the SkillWorld is the history 
of the formation, growth and destruction 
of tribes. From the simple rules of the 
SLAC algorithm an  evolutionary process 
emerges at the tribal or group level . Essen-
tially one can think of this evolution as the 
competition between tribes to retain nodes 
to continue to exist. This process is in con-
stant fl ux due to mutation and movement, 
no equilibrium state is attained and no 
tribe lasts forever. As long as new altruistic 
tribes are created at least as rapidly as they 
are destroyed altruism can survive. 

  Figure 4  shows a small detail of snap-
shots of the population over time (space 
does not permit full size snapshots). As can 
be seen, tribes quickly emerge and grow, 
producing various structures and sizes 
with internally specialized nodes. 

 

5.3 Tribal Structures 
 Within the SkillWorld, tribes with dif-

ferent structures and skill mixes will sup-
port different levels of utility – a highly 
connected tribe with an even mix of skills 
would produce better results than a tribe 
missing some skill. Hence, selection at the 
tribe level (group selection) will tend to 
operate to structure the tribes into more 
optimal structures of skill types. We would 

therefore expect to see tribes composed of 
nodes possessing each skill type linked to-
gether such that a node receiving a job can 
either process it directly or will be directly 
linked to a node with the appropriate skill 
willing to do the job. In the SkillWorld then, 
we have tribe level selection not only oper-
ating to control selfi shness but also to tune 
the internal (organizational) structure of 
the tribe. 

  Fig. 4.  Details showing just a small part of the entire population for the same typical run as 
show in fi gure 3. From an initially random graph disconnected components (we call tribes) 
emerge with internal specialization and rich structure. The numbers in the nodes represent 
the node skill type. 6  

          6 
    Full-sized pictures can be found at http://www.davidhales.com/esoa05pics.     
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 We fi nd this particularly exciting since 
we believe that by increasing the complex-
ity of the task domains and giving nodes a 
little more freedom to hop more than one 
link within their tribe it should be possible 
to evolve tribes with  complex organization-
al structures  tuned to performing in the 
given task domain. Moreover, since the 
tribes are constantly evolving they should 
be able to  change their structure dynami-
cally to address a change in the task do-
main.  7  

 6 Conclusion 
 We have demonstrated that the SLAC al-

gorithm can be applied in a scenario (the 
SkillWorld) requiring node specialization 
in addition to the suppression of selfi sh be-
haviour. When the algorithm is executed 
the network quickly divides into compet-
ing ‘tribes’ (disconnected components). 
An evolutionary process then emerges at 
the group level selecting effi cient internal-
ly specialized tribes – which deliver high 
levels of service with respect to user-sub-
mitted jobs at the nodes. 

 We adapted the SkillWorld scenario 
from a previous model developed for the 
purposes of social scientifi c theorizing [12, 
13]. The previous ‘tag-based’ model relied 
on mean-fi eld mixing (with no population 
structure) and followed a conventional 
evolutionary process. 

 Our belief that the SLAC algorithm 
works via a kind of group selection occur-
ring at the level of the ‘tribe’ gave us the a 
priori   expectation that it would select 
tribes that could perform well in the Skill-
World. In this sense,  dare we claim the be-
ginning of a ‘proto-theory’  allowing us to 
make some modest qualitative predic-
tions? More generally, we claim that this 
paper demonstrates concretely within a 
dynamic network the emergence of what 
has been termed a ‘meta-state transition’ 

within evolution [16]. It has been argued 
that the emergence of life itself and major 
steps in biological evolution (e.g. multicel-
lular organisms) and social evolution (e.g. 
large complex societies) occur over such 
meta-state transitions. In this context we 
advance our results as possibly of great 
theoretical insight. 

 It is important to understand that the 
concept of  the ‘tribe’ is actually a theoreti-
cal construct  we use to help to explain and 
understand the  emergent phenomena  pro-
duced by the SLAC algorithm over time. 
The tribes are not ‘programmed’ into the 
nodes a priori   but rather emerge from the 
interplay of task domain, interaction and 
the SLAC algorithm. We use the concept of 
‘tribes’ because we believe it to be valuable 
in beginning to understand, control and 
theorize about what is occurring in SLAC 
networks. However, since the tribes are 
emergent we do not  begin  with a ‘theory of 
tribes’ rather we observe, experiment and 
induce knowledge about them. As dis-
cussed below, this does not preclude, but, 
in fact, should support the formation of an 
analytical theory – we hope. 

 Since the nodes do not die or model ge-
netic operators, the tribe level selection 
process can be viewed as a kind of artifi cial 
 cultural group selection process . What is 
quite extraordinary is that  such a simple 
node level algorithm (SLAC) based on a few 
plausible assumptions about preferential 
attachment can lead to such complex and 
useful group level evolutionary dynamics . 

 A key issue, however, is that, although 
SLAC is simple, to implement the dynam-
ics is complex and currently it is not known 
how analytical tools can be applied to tru-
ly understand, predict and prove the prop-
erties of SLAC. So far the only ‘proofs’ we 
have are in the form of ‘existence proofs’ 
demonstrated by empirical analysis of 
simulation runs. Such ‘proofs’ are not wa-
tertight and can always be questioned giv-
en anomalous results from future simula-
tion studies (rather like experiments in the 
natural sciences). We have some confi -

dence in the general results from SLAC-like 
algorithms, however (such as those based 
purely on ‘tags’), since there have been a 
number of replications of those results 
from multiple independent implementa-
tions using different languages, machines 
and programmers [17]. However, none of 
this offers predictive insight into the pro-
cess as a good analytical model would. 
What we currently have is a kind of ‘tool-
box’ of algorithmic heuristics that appear 
to be reasonably robust over some mini-
mal task domains and scenarios. 

 However, currently, the only way to ap-
ply these methods to new domains is to 
simulate and experiment – copying and 
adapting heuristics that worked previously 
in similar domains. Perhaps this is not so 
far away from the edit/compile/debug cy-
cle of good old-fashioned software engi-
neering (GOFSE). This could bode well for 
future progress. 
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    Further experiments not detailed here demonstrate that even 

when all skills in the population are initialized to the same single 
type – the network quickly adapts into an even skill spread due to 
mutation on the skills and selection at the tribe level. 
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