
 Emergent Group Level
Selection in a
Peer-to-Peer Network
David Hales

Department of Computer Science, University of Bologna, Bologna , Italy

 This work was partially supported by the EU within the 6th Framework Programme
under contract 001907 (DELIS).

 David Hales

Department of Computer Science, University of Bologna

Mura Anteo Zamboni 7, IT–40127 Bologna (Italy)

Tel. +39 051 1998 0461, Fax +39 051 209 4510,

E-Mail dave@davidhales.com

 © 2006 S. Karger AG, Basel

1424–8492/06/0033–0108

$23.50/0

 Complexus 2006;3:108–118

 I N F O R M A T I O N T E C H N O L O G Y M O D E L L I N G

 Key Words
 Design of complex systems � Robustness � Network dynamics � Emergent
structure

 Abstract
 Many peer-to-peer (P2P) applications benefi t from node specialization: for ex-
ample, the use of supernodes, the semantic clustering of media fi les or the dis-
tribution of different computing tasks among nodes. We describe simulation
experiments with a simple selfi sh re-wiring protocol (SLAC) that can spontane-
ously self-organize networks into internally specialized groups (or ‘tribes’). Peers
within the tribes pool their specialisms, sharing tasks and working altruistically
 as a team – or ‘tribe’ – even though their individual behaviour is selfi sh. This ap-
proach is scalable, robust and self-organizing. These results have implications
and applications in many disciplines and areas beyond P2P systems.

 Copyright © 2006 S. Karger AG, Basel

 Published online: $ $ $

 DOI: 10.1159/000094193

Fax +41 61 306 12 34

E-Mail karger@karger.ch

www.karger.com

 Accessible online at:

www.karger.com/cpu

 Simplexus
 Peer-to-peer (P2P) networks such as

Kazaa, Gnutella or Bittorrent now account
for more than a third of everything that
happens on the Internet. As subcommuni-
ties within the larger Internet, where
members interact with others who share
their interests – in downloading music, for
example, or exchanging other kinds of
fi les – P2P networks give the Internet a
‘social’ structure that is every bit as real as
the social structure in the physical world,
and just as useful. In principle, such net-
works work like tightly knit communities
and make the resources of anyone avail-
able to all.

 In general, each member of a P2P group
downloads ‘client’ software that acts as an
interface through which users interact.
Each user is linked to a handful of others,
who are their immediate neighbours in the
network. When a user wants a particular
fi le, they request it from their neighbours,
who can supply the fi le, if they have it, or
pass on the request to their own neigh-
bours. In this way, the fi le may eventually
be found and returned to whoever request-
ed it. But today’s fi le sharing, of course, may
only hint at a universe of more sophisti-
cated future applications. P2P networks
might help people pool their resources to
provide a data backup service, for example,
or provide the shared infrastructure for
distributed computing. In this sense, P2P
networks probably represent the forerun-
ners of a far more ‘social’ Internet, in which
users will be able to cooperate and coordi-
nate their activities far more effectively.

 But making it work in a stable and resil-
ient way won’t be so easy. As David Hales of
the University of Bologna points out in this
paper, social cooperation, whether it is
among social bacteria, chimpanzees or In-
ternet users, always co-exists in a very un-
easy way with potential social dysfunc-
tions associated with cheating. Within a
P2P network, for example, users have in-
centives to cheat by downloading fi les
while never helping to supply them to oth-

109 Complexus 2006;3:108–118 Hales

 1 Introduction
 Open peer-to-peer (P2P) networks (in

the form of applications on top of the In-
ternet) have become very popular for fi le
sharing applications (e.g. Kazaa 1 , Gnutel-
la 2 , Bittorrent 3). However, can such tech-
nology be applied to other computing
tasks? For example consider a system in
which some nodes have lots of free storage,
some high bandwidth and others non-fi re-
walled connections to the network.

 Those nodes could cooperate to provide
a data back-up service – something that no
individual node could provide. Obviously,
in such a situation, if there is a demand for
a back-up service we would wish the nodes
to, somehow, get together and provide the
service – but how? One solution (and cur-
rently, it would seem, the only viable one
for deployable applications) is to code the
process of specialization, coordination and
cooperation into the protocol directly for
each different kind required. So for exam-
ple, where semantic clustering of media
fi les is required for fi le sharing, protocols
exist that implement it 4 [1]. Where systems
require supernodes [2], again, these are
implemented directly. There are two prob-
lems with this approach; fi rstly, for every
kind of specialization required a program-
mer must envisage this a priori, design a
protocol, then implement and test it. Sec-
ondly, since this process is complex enough
on its own, it is generally assumed that
nodes will follow the protocol – it is rare to
fi nd protocols robust to node failure, noise
or malicious behaviour, such as free riding,
although this is, to a certain extent, true
within the BitTorrent system [3].

 Additionally, it is also rare that nodes
can spontaneously change their specialism
if they come to recognize that they might
be able to do better following a different
role. The specialism of the node tends to be

ers. Several years ago, studies of the Gnutel-
la network found just this problem – well
over half its users were ‘free riders’ and
never contributed their resources to the
network. When many free ride, of course,
those who cooperate naturally lose out and
have the incentive to become free riders
themselves. Consequently, free riders po-
tentially undermine the cooperation on
which social function depends.

 Yet the main point of Hales’s paper is
more optimistic – that an imaginative ap-
proach to engineering P2P networks may
yet provide means for overcoming such
problems. In human societies, it is often
the credible threat of punishment that
tends to deter cheaters. Such mechanisms
may ultimately also be useful in the P2P
context. But Hales suggests that it may also
be possible to achieve cooperation in the
absence of punishment by designing the
basic rules by which a network operates so
that cooperation can be sustained, even if
some users do try to cheat. Hales and col-
leagues have already shown how this can
be achieved in the simple context of fi le-
sharing networks. Here he demonstrates
that the same simple mechanism can also
be extended to help promote cooperative
behaviour in more sophisticated scenarios
of the kind that may ultimately make P2P
networks more generally useful.

 In a fi le-sharing network, users would
like to fi nd fi les they want and download
them from others. Each person controls
their links to others and can change these
links as they like. They can also control
whether or not they are cooperative. A user
might be altruistic and happily respond to
others’ requests for fi les, or be non-altruis-
tic (like a lot of greedy Gnutella users) and
never lift a fi nger to help anyone else. In
previous studies, Hales has demonstrated
that it is surprisingly easy, in this context,
to engineer cooperation by supplying
P2P users with a simple strategy for self-
improvement. The idea is to let pairs of
users occasionally compare their perfor-
mance – the fraction of times their re-

hard-coded or relies on user level switches.
This kind of approach limits the ability of
the system to automatically adapt to chang-
ing task scenarios – however, see Mon-
tresor [2] in which supernodes are dynam-
ically allocated to improve performance.

 Ideally, we would like a more general ap-
proach that could be applied to a range of
different task domains with minimal tun-
ing. We would like the approach to offer dy-
namic specialization and respecialization
if nodes come to recognize they could do
better playing another role and have the
ability to do so or if the task domain chang-
es requiring different kinds of skills to be
combined. In addition, we want the system
to be able to deal with free riders and errant
or malicious nodes but also to support al-
truistic cooperation between specialists
when this is required for job completion.
Finally, we require this to be as scalable,
self-organizing and robust as possible.

 In this paper we do not claim to have
addressed all these issues to the level of de-
ployment; what we propose is, we claim,
the beginnings of an approach that may al-
low us to address these issues. In the simu-
lated scenarios so far implemented our re-
sults are very encouraging and we plan to
continue this line of work.

 In the following sections, we state our
assumptions concerning behaviour in
open P2P systems, then we introduce the
SLAC algorithm in general terms. We fol-
low by formulating a minimal task domain
scenario called the SkillWorld, to which we
wish to subject a simulated P2P network
running SLAC. We then describe how we
apply SLAC within SkillWorld and present
some experiments and results. We inter-
pret the results and describe a ‘typical his-
tory’ in the SkillWorld.

 At the end of the paper we summarize
what we have observed and what it means.

 1
 The Gnutella home page: http://www.gnutella.com.

 2
 The Kazaa home page: http://www.kazaa.com.

 3
 The BitTorrent home page: http://www.bittorrent.com. See also Cohen [3] for a description of the way BitTorrent works.

 4
 For example see the MLdonkey system: http://mldonkey.org.

110 Complexus 2006;3:108–118 Group Selection in P2P

quests actually get answered success-
fully – and to let those doing worse copy
the behaviour of those doing better; that
is, to mimic their behavioural stance (al-
truistic or non-altruistic) and also to copy
their links to other users.

 It is plausible to assume that if users
have ready access to such a ‘copy and re-
wire’ tactic, they will probably use it. After
all, it’s an easy way, selfi shly, to improve
your own performance. What is remark-
able is that users’ greed, if channelled and
expressed in this particular fashion, leads
quickly to the emergence of lots of altruism
and cooperation. Here is how it works, as
Hales has discovered in extensive simula-
tions. Suppose everything starts out at ran-
dom, with users mixed in their altruism
and linked together in some haphazard
way. Then naturally, some clusters of users
quite by chance will happen to have more
altruists than others. Members of these al-
truistic groups will generally do better
than average, as their neighbours help
them to fi nd fi les. Consequently, as users go
about comparing themselves to others and
trying to copy their way to improvement,
many will tend to become altruistic and to
link themselves into this altruistic cluster,
making it grow. In short, copying and re-
wiring, inspired solely by greedy self-inter-
est, makes altruistic clusters grow and
spread at the expense of less altruistic clus-
ters, all through an evolutionary competi-
tion between groups with different levels of
altruism.

 If this seems a little too good to be true,
it is, and Hales has also found that such
‘tribes’ of cooperators cannot last. In his
simulations, he allowed for occasional ‘mu-
tations’ – for the possibility that users can
change their behaviour and links to others
quite at random. As a result, an altruistic
tribe will eventually get ‘infected’ by a
cheater, someone who stays linked with the
group, but who turns non-altruistic. Cheat-
ers immediately make a killing, gaining
from the altruism of all their neighbours,
without spending any effort to help them.

We claim that the results indicate a process
that has possibly profound implications
and applications beyond just P2P systems.

 2 Behavioural Assumptions in
Open Networks
 How do nodes behave in open P2P net-

works? Of course, the simple answer is, as-
suming nodes are autonomous: anyway
they like to behave!

 Given this fact, how then do we proceed
to devise protocols that will lead to desired
system-level functions? Obviously, we
have to begin by making assumptions
about the likely behaviour of other nodes
in the network. Such assumptions should
be as realistic as possible but also simple
enough to be practically computable and
transferable between a number of do-
mains. Assumptions made here are essen-
tially the axioms of a kind of mini social
theory which then informs the design of
peer software.

 Many approaches (often unconscious-
ly) inherit assumptions from previous so-
cial sciences (e.g. economics, sociobiolo-
gy, sociology). For example, if we assume
nodes will behave ‘rationally ’ in the con-
text of classical game theory , then we com-
pute ‘Nash equilibrium’; inheriting our as-
sumptions from game theory which is a
body of knowledge assuming perfect ra-
tionality and perfect information. The ba-
sic approach is to assume that all individ-
uals have perfect knowledge of the game
being played and all possible outcomes
along with infi nite computational time
and common knowledge that all individu-
als are the same in these respects. Given
these assumptions it is sometimes possi-
ble to analytically derive the ‘Nash equilib-
ria’ of the game being played. The idea is
that given the previous classical assump-
tions any system will fi nd and stay in a
Nash equilibrium. However, it is unclear
that such assumptions hold in dynamic
open P2P networks and the derivation of
such equilibria within dynamic topologies
and changing populations is currently be-

yond state-of-the-art analytical tech-
niques.

 In the context of sociobiological models
[4,5], which are based on the evolution of
behaviours of interacting animals over
time, the assumption is that behaviours (or
strategies) reproduce in proportion to
their average fi tness (utility or score) such
that fi tter behaviours become more nu-
merous over time. Additionally such mod-
els assume that mutation in the form of
random changes in behaviour also takes
place. This evolutionary game theory ap-
proach allows for an ecology of behaviours
to evolve over time. In addition, there is no
requirement that agents have perfect ratio-
nality or perfect information – just enough,
such that better performing strategies tend
to increase in the population. For biologi-
cal systems this occurs via Darwinian evo-
lution where utility equates to fi tness.
However, P2P networks do not evolve in a
Darwinian fashion. Nodes do not repro-
duce and it is unclear what ‘fi tness’ means
in this context.

 We have shown in recent work that re-
sults from evolutionary models can be ap-
plied in networks if we allow nodes the
ability to ‘copy and re-wire’ within the net-
work to improve their own situation [6–9].
This latter innovation demonstrates it is
possible to import work originally mod-
elled in a conventional evolutionary frame-
work into a dynamic network model. Nev-
ertheless, in the absence of any deductive
proof of the equivalence of evolution and
the re-wire rules it is necessary to imple-
ment and test previous mechanisms to de-
termine if the properties of interest can be
carried over into networks.

 Summary of assumptions concerning
open P2P networks:

 (1) Nodes are in the network for what
they can get out of it.

 (2) Nodes modify their behaviours to
improve their individual benefi t.

 (3) Nodes have limited knowledge about
other peers and the network in general.

111 Complexus 2006;3:108–118 Hales

 The fi rst assumption would appear to
be plausible within open P2P networks. In
the currently popular fi le sharing networks
the majority of uses download and run
peer client software (and hence join the
network) in order to get something (e.g. to
download a movie or a music fi le). It cer-
tainly is true that some people would join
for other reasons. For example, a user may
join to feel ‘part of an online community’
[10] or to distribute only their own content
– not downloading. Some could aim to
damage the functionality of the network
by distributing malicious content. Howev-
er, we argue that neither of these motiva-
tions informs the majority of the nodes. In
any case, most functions would be en-
hanced by purely altruistic behaviour
(such as distributing content without
downloading) and we conjecture that there
are at least as many pure altruistic as pure
malicious nodes in working networks.

 The second assumption is more prob-
lematic – who says nodes within a given
P2P network change behaviours to improve
their benefi t? Our argument here is rather
speculative – if not conjectural. We start
from the assumption of autonomy and ar-
gue that the function of peer client soft-
ware is ultimately under the control of the
user. For example, users may change oper-
ating system or client software settings
(e.g. limiting upload speeds), download
new versions of a peer client (e.g. incorpo-
rating ways to improve download success
and rates) or simply hack their own code if
they have the required skills. Of course, a
hacked client can be distributed to others
if it appears to have desirable properties
and will tend to be adopted if it delivers
those properties to others. We therefore
claim that currently, this kind of process is
occurring at the user level – via the adop-
tion of various clients and the control of
various node-level settings. The problem
hidden in this assumption is that the space
of available behaviours that each user can
choose from varies over time and is also
dependent on the knowledge of the user,

One cheater attracts others, and together
they ultimately undermine the group. So
tribes naturally come and go. Even so, how-
ever, Hales found that they form so quickly
that the overall level of cooperation re-
mains high on average – it’s just not always
the same users who are cooperating.

 In a real P2P network, of course, no ‘al-
gorithm’ will completely control users’ be-
haviour. They can be altruistic or non-al-
truistic at will, and can even hack into the
client software and make it do anything
they like. So it remains to be seen if the
copy and re-wire tactic, if made available
in a network, really would promote high
levels of cooperation. But in the present pa-
per, Hales tackles another issue on the road
to the practical engineering of P2P coop-
eration by exploring how the copy and re-
wire strategy might be adapted to more
delicate applications that move beyond
simple fi le sharing. He does this in the con-
text of a virtual world that he calls ‘Skill-
World’.

 File sharing networks require only one
skill – the ability to supply a fi le. In more
diversifi ed settings, P2P users might want
to accomplish tasks of many different
kinds, and so require a range of skills from
their network partners. SkillWorld models
this situation. Within it, as in a fi le-sharing
network, each of N nodes links to a hand-
ful of neighbours. Each can be either al-
truistic or non-altruistic, but each user
now also has a ‘skill’ type, selected from
one of fi ve different possibilities. In Skill-
World, users get assigned tasks that they
need to complete, and to do so, unless they
luckily have just the right skill, need to lo-
cate a neighbour in the network who both
has that skill and is willing to share it. In
simulations of such a network, Hales keeps
track of the costs and benefi ts of users’ be-
haviour by giving one ‘utility’ point to any-
one who gets one of their tasks completed.
Meanwhile, the person who had the rele-
vant skill and did the work has to pay out
0.25 utility points (helping others isn’t
free).

the kind of network connection, form of
operating system and many other related
factors. However, we note that similar as-
sumptions have provided some insight
into human sociocultural phenomena at
least as complex as the sociocultural phe-
nomena of P2P systems [11].

 Perhaps a more plausible way of think-
ing about the second assumption is to in-
terpret the space of all available clients in a
given P2P domain as the space of behav-
iours a user can select from – that is, a user
may change clients programs, say from
edonkey to BitTorrent because edonkey is
too slow for the content they required. The
user has in fact changed protocol and net-
work completely – but that need not matter
to them, and in fact the interpretation then
is an ecology of different networks with us-
ers switching between them.

 Alternatively, the assumption that be-
haviour can change regularly within a sin-
gle network can be seen as a design pro-
posal to be incorporated into a new proto-
col, rather than an interpretation of existing
protocols.

 The third assumption would appear to
be a necessary one in any large and highly
dynamic system – it is not practical or pos-
sible to collate accurate global statistics in
most such systems.

 3 The SLAC Algorithm
 In previous work we showed how a sim-

ple ‘copy and re-wire’ rule (or protocol or
algorithm) could produce high levels of co-
operation within simulated P2P networks
performing collective tasks. We named this
algorithm ‘SLAC’ because it uses selfi sh
link and behaviour adaptation to produce
cooperation. We showed that nodes in a
network emerged cooperation when play-
ing the single-round prisoner’s dilemma
game, under, what we argue, are plausible
assumptions about the kinds of behaviour
we fi nd in P2P systems. We also demon-
strated that the same results could carry
over into a more realistic fi le-sharing P2P
task domain [6].

112 Complexus 2006;3:108–118 Group Selection in P2P

 Given the inherent cost to helping, it
seems unlikely that nodes in this network
could possibly manage to cooperate. It
won’t generally pay to be altruistic, as you
do the work but get no benefi t. But Hales
found in his simulations that the ‘copy and
re-wire’ strategy of node self-improvement
can also build and sustain cooperation in
this more demanding setting. He started
SkillWorld with all users set randomly to
be altruistic or not. Randomly, he gave
them skills from the fi ve possibilities and
some links to other users. Users were then
selected, again at random, and given jobs
to do demanding one of the skills. As be-
fore, Hales allowed mutations to rarely and
randomly alter a user’s skill set, altruistic
stance and network links. He then moni-
tored how the fraction of jobs completed
successfully changed with time.

 In general, the only way a node can get
a job completed, if it doesn’t have the re-
quired skill, is to pass it to an altruistic
neighbour who does. Hence, a high rate of
success would imply the emergence of
large islands or tribes of altruistic nodes,
which is precisely what Hales found. By the
time every node had, on average, handled
a few tens of requests, the level of complet-
ed jobs had reached 90%. Interestingly,
however, it only worked for networks hav-
ing more than about 1,000 nodes, presum-
ably because network size increases the
likelihood that an altruistic group will
form somewhere, by chance, and then grow
by attracting others. In essence, the forma-
tion of altruistic tribes faces a ‘nucleation’
barrier much like that which makes some
liquid solutions ‘metastable’, though the
solid crystals grow quite quickly once
seeded.

 In his section 5.2, Hales offers a detailed
look at how precisely such cooperation
comes about. At fi rst, cheaters prosper, tak-
ing advantage of altruists. But altruists
leave these groups and begin forming co-
operative groups, which then grow (see his
fi g. 4). Anyone within this group, if they
search for a skill, will generally fi nd a

 The basic algorithm assumes that peer
nodes have the freedom to change behav-
iour (i.e. the way they handle and dispatch
requests to and from other nodes) and
drop and make links to nodes they know
about. In addition, it is assumed nodes
have the ability to discover other nodes
randomly from the network, compare their
performance against other nodes and copy
the links and (some of) the behaviours of
other nodes.

 As discussed above, we assume that
nodes will tend to use their abilities to self-
ishly increase their own utility in a greedy
and adaptive way (i.e. if changing some be-
haviour or link increases utility then nodes
will tend to select it).

 Over time nodes engage in some activ-
ity and generate some measure of utility U
 (this might be number of fi les downloaded
or jobs processed etc., depending on the
domain).

 Periodically, each node (i) compares its
performance against another node (j),
randomly selected from the population. If
 Ui ̂ Uj node i drops all current links and
copies all node j links and adds a link to j
 itself. Also, periodically, and with low prob-
ability, each node adapts its behaviour and
links in some randomized way using a
kind of ‘mutation’ operation. Mutation of
the links involves removing all existing

links and replacing them with a single link
to a node randomly drawn from the net-
work. Mutation of the behaviour involves
some form of randomized change – the
specifi cs being dictated by the application
domain (see later).

 Previous ‘tag’ models, from which SLAC
was developed [8,9,12], have indicated that
for good scalability properties the rate of
mutation applied to the links needs to be
higher than that applied to the behaviour,
by about one order of magnitude. In the
context of the algorithm shown in fi gure 1
this means that ‘mutation rate 1’ 1 1 ‘muta-
tion rate 2’.

 When applied in a suitably large popu-
lation, over time, the algorithm follows a
kind of evolutionary process in which
nodes with high utility tend to replace
nodes with low utility with nodes periodi-
cally changing behaviour and moving in
the network. However, as will be seen, this
does not lead to the dominance of selfi sh
behaviour, as might be intuitively expect-
ed, because a form of incentive mechanism
emerges via a kind of ostracism in the net-
work. The process can also be viewed as a
kind of ‘cultural group selection’ process
(see later discussion).

 Fig. 1. The generic SLAC algorithm. Each node executes this algorithm.

113 Complexus 2006;3:108–118 Hales

neighbour willing to supply it. These suc-
cessful, cooperative groups draw in new
members and come to dominate the popu-
lation, while at the same time evolutionary
pressure also leads these groups to have
well-mixed sets of skills, improving their
ability to carry out tasks. But success again
sets the stage for ultimate demise, as these
cooperative tribes offer prime ground for
cheaters, who can prosper at the tribe’s ex-
pense. Consequently, as Hales puts it, his-
tory in SkillWorld is ‘the history of the for-
mation, growth and destruction of tribes’.

 The demise of cooperative tribes is a pe-
culiar feature of the ‘copy and re-wire’ rule
of node self-improvement, either in the
fi le-sharing context, or in SkillWorld. Yet
the perpetually dynamic nature of the co-
operation to which it leads may hold hid-
den advantages in helping the network to
evolve solutions to new challenges ‘on the
fl y’. If the needs of the network were to sud-
denly shift so that most jobs required, say,
just two particular skills, a new tribe would
quickly emerge with just this set of skills.
The inherent cooperation set up between
different groups gives the entire popula-
tion a kind of adaptive talent for pattern
recognition, as those groups tuned to pres-
ent conditions naturally grow and displace
others.

 The copy and re-wire strategy of node
self-improvement supports the emergence
of cooperation in a fl exible and even ‘intel-
ligent’ way, and appears to be a promising
route for engineering the self-organization
of socio-technological communities. As
Hales points out, the tribes are in no way
‘pre-programmed’ into the simulation;
they emerge quite on their own as nodes
simply try to get what they want. The tribes
emerge, in effect, as a crude form of ‘cul-
ture’ that helps nodes coordinate them-
selves to handle tasks they could not han-
dle alone. Further work will be required to
see how this particular technique fares in
the context of the full range of human be-
haviour likely to be encountered in any
real-world P2P scenario, but it is hard to

 4 The SkillWorld Scenario
 In order to determine if the SLAC ap-

proach can support specialization within
tribes we construct an abstract and mini-
mal simulated task domain that requires
nodes to perform specialized tasks coop-
eratively in order to satisfy their individu-
al needs. We call the task domain Skill-
World and it is an adaptation of a socio-
logically inspired scenario originally given
in Hales [13].

 The SkillWorld consists of a population
of N nodes. Each node may have zero or
more links (up to a maximum of 20) to oth-
er nodes. Links are undirected such that
the entire population can be considered as
a undirected graph G with each vertex be-
ing a node and each edge being a link. Each
vertex (or node) is composed of three state
variables – a ‘skill type’ s � {1,2,3,4,5}, an
‘altruism fl ag’ a � {0,1} and a satisfaction
score or ‘utility’ u � R (where R is a positive
real number).

 Periodically, with uniform probability, a
node i is selected from the population N. A
‘job’ J is then generated marked with a ran-
domly chosen skill sJ . The skill is selected,
again randomly with uniform probability,
from the domain {1,2,3,4,5}. Job J is then
passed to node i . If node i possesses the
correct matching skill (i.e. if s i = sJ) then
node i may process the job itself without
any help from other nodes. For successful-
ly processing a job J the receiving node
gains one unit of credit: u ← u + 1.

 This process of generating and passing
jobs to nodes represents user-level re-
quests for services – such as, for example,
searching for a particular fi le, performing
some processing task or storing some data.
In the SkillWorld we do not represent the
actual jobs to be done, rather we represent
the skill required to perform the job. In our
minimal scenario, each job only requires
one skill to be completed.

 But what if node i receives a job for
which it does not have the correct skill (i.e.
if s i 0 sJ)? In this case i passes the job re-
quest to each neighbour in turn until all

have been visited or one of them, j , agrees
to process the job J . A neighbour j will only
agree to process J if its skill matches (s j =
 sJ) and the altruism fl ag is set (a j = 1) . If j
does agree to process the job then this costs
j a quarter unit of utility (uj ← uj – 0.25)
 yet increases the utility of i by one unit
(ui ← ui + 1).

 What this means is that node i looks for
an altruistic neighbour with the correct
skill to process job J . If i fi nds such a neigh-
bour (j) it increases its utility as if it had
completed the job itself whereas j decreases
its utility . This refl ects the notion that j is
altruistically processing J for the benefi t of
 i and that users are happy when jobs sub-
mitted to their nodes are completed but are
not happy when jobs from other nodes use
their node resources with no immediate
benefi t to themselves.

 5 SLAC in the SkillWorld
 We apply the SLAC algorithm within

SkillWorld by making the node skill types
and the altruism fl ags into evolvable state
variables such that they are copied from
more successful nodes (based on utility)
and mutated occasionally with low prob-
ability.

 Although SLAC has previously been
demonstrated as successful in promoting
cooperation in both a prisoner’s dilemma
playing scenario [7] and a simple fi le-shar-
ing scenario [6, 9] it has not yet been ap-
plied within a scenario requiring intra-
group (or tribe) specialization in addition
 to altruism. We are therefore asking a lot
from a simple algorithm: to self-organize
the population into altruistic yet internally
specialized tribes that pass and process
jobs using their various skills.

 The SkillWorld is the simplest scenario
we could think of that captures a process
of specialization for this initial investiga-
tion. We have a small number of skills (fi ve
in these simulations) and we only pass jobs
to immediate neighbours. Each node and
job is related to a single skill only (rather
than a subset of skills which would seem

114 Complexus 2006;3:108–118 Group Selection in P2P

imagine that similar approaches, inspired
by familiarity with the dynamics of coop-
eration in biological and social settings,
will not become increasingly relevant to
the engineering of a socially healthy Inter-
net.

 Mark Buchanan

more realistic). Also we assume nodes can
change skills at will (randomly via muta-
tion). This latter assumption might not
hold if skills relate to physical or unchange-
able characteristics of nodes like storage or
bandwidth for example. However, at this
stage we leave more realistic scenarios with
multi-hop passing and more complex skill
set arrangements to future work.

 In order to measure the success of SLAC
we take a simple measure – the proportion
of submitted jobs that are completed. We
can infer that a network in which the ma-
jority of jobs submitted are completed is

sustaining internally cooperative and spe-
cialized tribes since the only way to com-
plete most jobs is for nodes to pass them to
altruistic neighbours with required skills.

 5.1 Some Experiments and Results
 Initially we ran a set of simulation ex-

periments in which we initialized all nodes
in the population with uniformly random-
ly selected skills, altruism fl ags and links.
We experimented with a number of net-
work sizes determining for each how many
cycles before the high performance was
achieved. A single cycle is the time unit by

0
100 1,000 10,000

Network size (N)
100,000 1,000,000

50

100

150

200

250

300

C
yc

le
s

to
 9

0%
 P

C
J

b

Network size (N)

15
100 1,000 10,000 100,000 1,000,000

20

25

30

35

40

C
yc

le
s

to
 9

0%
 P

C
J

 Fig. 2. a Number of cycles to high performance for different network sizes. When PCJ 1 90%
this means that over 90% of all jobs submitted to nodes are completed. Note: Overlapping cir-
cles have identical values. b Number of cycles to high performance for different network sizes
when all nodes are initialized selfi sh (a = 0). This can be compared to the random initialization
results in chart a . Note that there is a reverse scaling cost here. The results for N = 1,000 are
worse than shown since three outliers at about 1,000 cycles are not shown here.

which all nodes will have executed the
SLAC algorithm at least once, on average.
In one cycle 10N jobs are submitted to ran-
domly chosen nodes.

 In order to measure the success of SLAC
we take a simple measure – the percentage
of submitted jobs that are completed (PCJ).
We can infer that a network in which the
majority of jobs submitted are completed
is sustaining internally cooperative and
specialized groupings (or tribes) since the
only way to complete most jobs is for nodes
to pass them to altruistic neighbours with
the required skills.

 We categorized ‘high performance’ as a
PCJ 1 90%, we found that in the simula-
tions this was the highest stable value
reached, and ran simulations until this val-
ue was obtained – recording the number of
cycles required. Hence, if SLAC was work-
ing well in the SkillWorld we would hope
that within a small number of cycles the
PCJ would become high.

 We used a mutation rate of 0.001 on skill
type s and altruism fl ag a (shown in fi g. 1
as ‘mutation rate 2’) . Mutation on the links
(shown in fi g. 1 as ‘mutation rate 1’) was an
order of magnitude higher (0.01). We carry
over this assumption – that the mutation
rate on the links should be higher than that
on the ‘strategies’ – from previous experi-
mental work comparing several different
scenarios and models [9]. We fi xed the
maximum number of links between nodes
to 20. Links are undirected and therefore
symmetric. If an operation results in a

115 Complexus 2006;3:108–118 Hales

node requiring a new link and it already
has the maximum then a random link is
discarded by the node and the new link ac-
cepted. Using this method nodes never re-
fuse new links but may often lose old ones.
This adds to the noisy and dynamic nature
of the scenario.

 Figure 2 shows results from 30 individ-
ual simulation runs. Each point is a differ-
ent run showing the fi rst cycle at which the
PCJ 1 90%. As can be seen, high perfor-
mance is attained within a few tens of cy-
cles even for networks of size N = 10 5 . No-
tice that there appears to be a very slight
upward trend in cycles as N increases;
however, this is negligible – the results
therefore indicate close to zero scaling
cost . This highly desirable property was
also evidenced in a previous application of
SLAC to a simulated fi re-sharing scenario
[6]. Figure 2 b shows results under the same
conditions except that all nodes are initial-
ized to be selfi sh (a = 0). This gives a kind
of ‘worst case scenario’ as far as altruism is
evolving. It is important to show that the
system can escape from this, since this
demonstrates that even if a complete fail-
ure of node altruism should occur (either
through chance or malicious attacks) then
the system can recover relatively quickly.
We notice here the reverse scaling proper-
ties that we originally noticed and ana-
lyzed in a previous ‘tag’ model [12]. Essen-
tially, with bigger populations, there is
more likelihood of the chance formation of
a small altruistic tribe. This then goes on
to ‘seed’ the population with altruism. 5

 Interestingly, it was found that for popu-
lations where N ! 1,000 high performance
was not produced even when runs were ex-
tended to several thousand cycles. Intui-
tively this is consistent with the ‘group se-
lection’ hypothesis concerning how SLAC
operates. With small populations there are
not enough nodes to form enough compet-

ing groups (or tribes) so evolution cannot
operate at the group level.

 5.2 History in the SkillWorld –
Tribal Dynamics
 One way to convey the dynamics of a

typical SkillWorld simulation run is to
describe a typical ‘history’ in narrative
form – this method is sometimes used in
computational sociology, particularly in
work with artifi cial societies [14, 15] car-
ried over from more traditional sociologi-
cal methods of explanation. In the rest of
this section we give such a ‘typical history’.
Although we will make general points we
will also refer to a specifi c single simula-
tion, run given in fi gure 3 , to illustrate our
analysis.

 Initially, the SkillWorld is a random
graph, all nodes are connected via a few
hops and clustering is low. Skills and altru-
ism are randomly scattered. Very quickly,
the graph breaks into a population of many
disconnected components because nodes
quickly re-wire themselves to better per-
forming nodes.

 The better performing nodes are initial-
ly the non-altruists who exploit their

groups (or tribes) selfi shly. However, this is
a non-sustainable strategy since this ex-
ploitation causes nodes to leave their ex-
ploited tribes and join tribes in which there
is less exploitation – nodes in tribes with
less exploiters in them do better (higher
utility) because they are cooperating as a
team. The tribes dominated by non-altru-
ists quickly ‘wither away’ as nodes leave.
When no nodes are left then the tribe no
longer exists – in this way tribes die , even
though nodes do not die . This emergent
property of the birth and death of tribes
lays the ground for evolution to operate the
group (tribe) level.

 Figure 3 indicates the above process oc-
curring in the fi rst 10 cycles or so. Notice
that the number of selfi sh nodes peaks,
and the PCJ bottoms out, at about cycle 10.
The number of components (i.e. tribes) in-
creases in the early phase peaking just be-
fore cycle 20 (representing a peak of 60
components).

 Altruistic tribes function well and grow
as more nodes join, new tribes are occa-
sionally formed as nodes randomly,
through mutation, split from a tribe. As al-
truistic tribes grow larger they eventually

0

0 20 60
Cycles

40 80 100

0.2

N
or

m
al

iz
ed

 v
al

ue
s

0.4

0.6

selfish PCJ C comps conprob

0.8

1.0

 Fig. 3. The time series of a typical single run in SkillWorld (N = 1,000). Shown are the number
of selfi sh nodes as a proportion of the entire population (selfi sh), the PCJ, the clustering coeffi -
cient (C), the number of components in the population (comps, which is normalized by dividing
by 60) and the average probability that a route exists between any two nodes (conprob).

 5
 See Hales [12] for a more detailed explanation of this reverse-scal-

ing cost including the beginnings of an analytical treatment.

116 Complexus 2006;3:108–118 Group Selection in P2P

become ‘infected’ or ‘invaded’ by a non-al-
truist node – either by mutation of an ex-
isting member node or the entering of a
new node to the tribe. When this happens
the tribe is quickly destroyed via disper-
sion since a non-altruist will exploit the
tribe selfi shly and this will lead to many
more nodes quickly copying that node un-
til the tribe ‘dies’ because all nodes leave it
– because a tribe dominated by selfi sh
nodes gives lower utility to all nodes with-
in it than one dominated by altruists.

 Figure 3 shows, from about cycle 20 on-
ward, the above process occurring. A de-
crease in the number of components
(comps) and an increase in completed jobs
(PCJ) are correlated with a decrease in the
number of selfi sh nodes (selfi sh). This is
because altruistic tribes grow in size – re-
ducing the total number of components
(comps) and reducing selfi sh nodes (self-
ish). By about cycle 30 selfi shness is very
low and completed jobs (PCJ) reach a high
level. Notice that the dynamic nature of the
formation and dissolution of the tribes is
refl ected in the variation of the number of
components over time (comps) after PCJ
goes high.

 History in the SkillWorld is the history
of the formation, growth and destruction
of tribes. From the simple rules of the
SLAC algorithm an evolutionary process
emerges at the tribal or group level . Essen-
tially one can think of this evolution as the
competition between tribes to retain nodes
to continue to exist. This process is in con-
stant fl ux due to mutation and movement,
no equilibrium state is attained and no
tribe lasts forever. As long as new altruistic
tribes are created at least as rapidly as they
are destroyed altruism can survive.

 Figure 4 shows a small detail of snap-
shots of the population over time (space
does not permit full size snapshots). As can
be seen, tribes quickly emerge and grow,
producing various structures and sizes
with internally specialized nodes.

5.3 Tribal Structures
 Within the SkillWorld, tribes with dif-

ferent structures and skill mixes will sup-
port different levels of utility – a highly
connected tribe with an even mix of skills
would produce better results than a tribe
missing some skill. Hence, selection at the
tribe level (group selection) will tend to
operate to structure the tribes into more
optimal structures of skill types. We would

therefore expect to see tribes composed of
nodes possessing each skill type linked to-
gether such that a node receiving a job can
either process it directly or will be directly
linked to a node with the appropriate skill
willing to do the job. In the SkillWorld then,
we have tribe level selection not only oper-
ating to control selfi shness but also to tune
the internal (organizational) structure of
the tribe.

 Fig. 4. Details showing just a small part of the entire population for the same typical run as
show in fi gure 3. From an initially random graph disconnected components (we call tribes)
emerge with internal specialization and rich structure. The numbers in the nodes represent
the node skill type. 6

 6
 Full-sized pictures can be found at http://www.davidhales.com/esoa05pics.

117 Complexus 2006;3:108–118 Hales

 We fi nd this particularly exciting since
we believe that by increasing the complex-
ity of the task domains and giving nodes a
little more freedom to hop more than one
link within their tribe it should be possible
to evolve tribes with complex organization-
al structures tuned to performing in the
given task domain. Moreover, since the
tribes are constantly evolving they should
be able to change their structure dynami-
cally to address a change in the task do-
main. 7

 6 Conclusion
 We have demonstrated that the SLAC al-

gorithm can be applied in a scenario (the
SkillWorld) requiring node specialization
in addition to the suppression of selfi sh be-
haviour. When the algorithm is executed
the network quickly divides into compet-
ing ‘tribes’ (disconnected components).
An evolutionary process then emerges at
the group level selecting effi cient internal-
ly specialized tribes – which deliver high
levels of service with respect to user-sub-
mitted jobs at the nodes.

 We adapted the SkillWorld scenario
from a previous model developed for the
purposes of social scientifi c theorizing [12,
13]. The previous ‘tag-based’ model relied
on mean-fi eld mixing (with no population
structure) and followed a conventional
evolutionary process.

 Our belief that the SLAC algorithm
works via a kind of group selection occur-
ring at the level of the ‘tribe’ gave us the a
priori expectation that it would select
tribes that could perform well in the Skill-
World. In this sense, dare we claim the be-
ginning of a ‘proto-theory’ allowing us to
make some modest qualitative predic-
tions? More generally, we claim that this
paper demonstrates concretely within a
dynamic network the emergence of what
has been termed a ‘meta-state transition’

within evolution [16]. It has been argued
that the emergence of life itself and major
steps in biological evolution (e.g. multicel-
lular organisms) and social evolution (e.g.
large complex societies) occur over such
meta-state transitions. In this context we
advance our results as possibly of great
theoretical insight.

 It is important to understand that the
concept of the ‘tribe’ is actually a theoreti-
cal construct we use to help to explain and
understand the emergent phenomena pro-
duced by the SLAC algorithm over time.
The tribes are not ‘programmed’ into the
nodes a priori but rather emerge from the
interplay of task domain, interaction and
the SLAC algorithm. We use the concept of
‘tribes’ because we believe it to be valuable
in beginning to understand, control and
theorize about what is occurring in SLAC
networks. However, since the tribes are
emergent we do not begin with a ‘theory of
tribes’ rather we observe, experiment and
induce knowledge about them. As dis-
cussed below, this does not preclude, but,
in fact, should support the formation of an
analytical theory – we hope.

 Since the nodes do not die or model ge-
netic operators, the tribe level selection
process can be viewed as a kind of artifi cial
 cultural group selection process . What is
quite extraordinary is that such a simple
node level algorithm (SLAC) based on a few
plausible assumptions about preferential
attachment can lead to such complex and
useful group level evolutionary dynamics .

 A key issue, however, is that, although
SLAC is simple, to implement the dynam-
ics is complex and currently it is not known
how analytical tools can be applied to tru-
ly understand, predict and prove the prop-
erties of SLAC. So far the only ‘proofs’ we
have are in the form of ‘existence proofs’
demonstrated by empirical analysis of
simulation runs. Such ‘proofs’ are not wa-
tertight and can always be questioned giv-
en anomalous results from future simula-
tion studies (rather like experiments in the
natural sciences). We have some confi -

dence in the general results from SLAC-like
algorithms, however (such as those based
purely on ‘tags’), since there have been a
number of replications of those results
from multiple independent implementa-
tions using different languages, machines
and programmers [17]. However, none of
this offers predictive insight into the pro-
cess as a good analytical model would.
What we currently have is a kind of ‘tool-
box’ of algorithmic heuristics that appear
to be reasonably robust over some mini-
mal task domains and scenarios.

 However, currently, the only way to ap-
ply these methods to new domains is to
simulate and experiment – copying and
adapting heuristics that worked previously
in similar domains. Perhaps this is not so
far away from the edit/compile/debug cy-
cle of good old-fashioned software engi-
neering (GOFSE). This could bode well for
future progress.

 Acknowledgements
 Thanks go to Mark Jelasity for pointing out some

of the recent models that bear close comparison to
this one, also, along with Ozalp Babaoglu and Alber-
to Montresor, for writing clear and readable papers
about P2P systems that have helped me in beginning
this line of work.

 7
 Further experiments not detailed here demonstrate that even

when all skills in the population are initialized to the same single
type – the network quickly adapts into an even skill spread due to
mutation on the skills and selection at the tribe level.

 References
 1 Handurukande S, Kermarrec A-M, Le Fessant F,

 Massoulié L: Exploiting semantic clustering in the
eDonkey P2P network. 11th ACM SIGOPS European
Workshop (SIGOPS), Leuven, 2004.

2 Montresor A: A Robust Protocol for Building Super-
peer Overlay Topologies. 4th International Conference
on Peer-to-Peer Computing (P2P’04), 2004, pp 202–
209.

3 Cohen B: Incentives Build Robustness in BitTorrent
(2003). 1st Workshop on the Economics of Peer-2-
Peer Systems, Berkley, 2003. Available at http://www.
sims.berkeley.edu/ research/conferences/p2pecon/.

4 Trivers R: The evolution of reciprocal altruism. Q Rev
Biol 1971; 46: 35–57.

5 Maynard-Smith J: Evolution and the Theory of
Games. Cambridge, Cambridge University Press,
1982.

6 Hales D: From Selfi sh Nodes to Cooperative Networks
– Emergent Link Based Incentives in Peer-to-Peer
Networks. Proc 4th IEEE International Conference on
Peer-to-Peer Computing (P2P2004). Los Alamitos,
IEEE Computer Soc Press, 2004.

118 Complexus 2006;3:108–118 Group Selection in P2P

 7 Hales D: Self-Organising, Open and Cooperative P2P
 Societies – from Tags to Networks. 2nd Workshop
on Engineering Self-Organising Applications (ESOA
2004), LNCS 3464, pp. 123–137. Berlin, Springer,
2005.

 8 Hales D: Change Your Tags Fast! – a Necessary Condi-
tion for Cooperation? Workshop on Multi-Agents and
Multi-Agent-Based Simulation (MAMABS’04). Ber-
lin, Springer, 2005.

 9 Hales D, Edmonds B: Applying a socially-in-
spired technique (tags) to improve cooperation
in P2P Networks. IEEE Trans Syst Man Cybern A,
2005;35:385–395.

10 Strahilevitz L: Charismatic code, social norms, and
the emergence of cooperation on the fi le-swapping
networks. Virginia Law Rev 2003; 89 . http://ssrn.com/
abstract = 329700.

11 Binmore K: Just Playing, Game Theory and the Social
Contract. Cambridge, MIT Press, 1998, vol 2.

12 Hales D: Cooperation without space or memory:
tags, groups and the Prisoner’s dilemma; in Moss
S, Davidsson P (eds): Multi-Agent-Based Simula-
tion. Lecture Notes in Artifi cial Intelligence. Berlin,
 Springer, 1979, pp 157–166.

 13 Hales D: Evolving specialisation, altruism and
group-level optimisation using tags; in Sichman JS,
Bousquet F, Davidsson P (eds): Multi-Agent-Based
Simulation II. Lecture Notes in Artifi cial Intelligence.
Berlin, Springer, 2002, vol 2581, pp 26–35.

 14 Epstein JM, Axtell R: Growing Artifi cial Societies –
 Social Science from the Bottom Up. Cambridge, MIT
Press, 1996.

15 Axelrod R: A model of the emergence of new politi-
cal actors; in Gilbert GN, Conte R (eds): Artifi cial
 Societies. London, UCL Press, 1995.

16 Heylighen F: Evolution, Selfi shness and Cooperation.
J Ideas 1992; 2/4: 70–76.

 17 Edmonds B, Hales D: Replication, replication and
 replication – some hard lessons from model align-
ment. J Artif Soc Soc Simul 2003; 6/4.

