CSS - TW1

International Workshop on Cooperation in Selfish Entities (Incorporating TagWorld I) U. Bologna, BERTINORO, Italy

COALITIONAL AND ANTAGONISTIC GAMES (ALGORITHMIC ISSUES)

Paul G. Spirakis
RACTI (Greece)

May 2006

- ALGORITHMIC GAME THEORY:

A new field of Research.

- Interaction among Selfish Entities
- Till now, non-cooperative strategic games
- Point of emphasis: Lack of coordination (e.g. in routing)
- Characterization and Computing of Nash Equilibria.

Complex "real life" interactions require more:

- Selfish coalitions (e.g. Internet providers, politics)
- Direct Confrontation (e.g. security)
- Antagonism
(e.g. fitness notion in biology)
\bullet
in static but also in dynamic situations.

The algorithmic view

- Finite domains
- Discrete time dynamics
- Computability and Efficiency
- How to decide, how to predict
- Important parameters and concepts for measuring "how good"
- The computational face of Complexity (and how to cope with)

Rigorous arguments

In this talk, new research on:

- Selfish Coalitions
- Direct Confrontation
- Antagonism in populations
- Emphasis in Models, analysis, proofs of statements
- Simplicity but non-triviality

The DELIS Project

EU 6 ${ }^{\text {th }}$ Framework Contract 001907

FET Proactive action: Complexity

"Dynamic and Evolving, Large Scale, Information Systems"
(DELIS)
2005-2008

Part I

SELFISH COALITIONS

(Fotakis, Kontogiannis, Spirakis, 06)

I.I Indepentent Resources

(parallel links, machines)

m separate, identical resources
n jobs (players, users)
Each job j has an (integer) service demand w_{j}
Let $\bar{W}=\left\{w_{1}, \ldots, w_{n}\right\}$ the set of demands

Static Coalitions:

A set of $k \geq 1$ static coalitions $C_{1} \ldots C_{k}$
is a fixed partition of \bar{W} into k nonempty subsets.
I.e.

- a coalition is a group of jobs
- here, coalitions do not have joint members

Idea: Each coalition is a (collective) player

Coalitions as Strategic Games

- A pure strategy for a coalition C_{j} is the selection of a resource for each of C_{j} 's members.
- A mixed strategy of a coalition C_{j} is any probability distribution on C_{j} 's pure strategies.
- A configuration is a collection _ of pure strategies, one for each coalition
- $\left({ }_{-\mathrm{j}}, a_{\mathrm{j}}\right)$ is a configuration which differs from _ only in C_{j} 's pure strategy which is now a_{j}.
- A mixed strategies profile p is a collection of mixed strategies, one per coalition and independent of each other.
- The support of coalition C_{j} (in the profile p) is the set of pure strategies that C_{j} chooses to play with non-zero probability in p .

The payoffs

- The Selfish Cost of a Coalition C_{j}, in a configuration _, is the maximum demand (load) over the set of resources that C_{j} uses in ${ }^{\text {. }}$

$$
\text { Call it } \quad \text { j (_) }
$$

E.g.

Let $C_{j}=3$ users with demands 7, 5, 1
Let $m=10$ resources $R_{1} \ldots R_{10}$
But C_{j} chooses in _ to put 7,1 in R_{3} and 5 in R_{8} Now in _, all others put 50 (total) in R_{3} and 10 in R_{8}

$$
\text { So, }, j\left(_\right)=58
$$

Now, let coalition C_{j} play (purely) its loads to some resources (pure strategy _j) Let all other groups play mixed strategies p.

It is reasonable to extend the selfish cost notion to the conditional expectation of the maximum demand on the resources of C_{j}, given that C_{j} has adopted ${ }_{\mathrm{j}}$, and the others play p.

We call it ${ }_{-j}\left(\mathrm{p}, __{\mathrm{j}}\right)$

EQUILIBRIA

- Pure Nash Equilibrium (PNE)

A configuration _ so that for each coalition C_{j} and each pure strategy a_{j} of C_{j} it holds

$$
{ }_{-j}\left(_^{\prime}\right) \leq-j\left(\left(_{-j}, a_{j}\right)\right.
$$

- Mixed Equilibria: They are mixed profiles p so that for each C_{j} and each _jin C_{j} 's support,

$$
\underset{(\text { among all }}{-j\left(p, a_{j}\right) \text {) is minimum }}
$$

- Social Cost: For configuration _, the Social Cost SC(_) is the maximum load over the set of all resources.
For mixed profiles $p, \operatorname{SC}(p)$ is the expectation of the maximum load.

Let _* a configuration that minimizes the $\operatorname{SC}\left(_\right)$ We call OPT the SC(_*).

- Price of Anarchy : It is the maximum value R, over all NE p, of the ratio $S C(p)$ / OPT
- Improvement path: It is a sequence of configurations such that any two consecutive configurations in it differ only in the pure strategy of one coalition; furthermore the cost of this coalition improves in the latter configuration.

Coalitions in Networks

- $G(V, E)$ a directed net
- Edges have delays (nondecreasing functions of their loads)
- Each coalition is again a set of demands
- Each coalition C_{j} wants to route its demands from s_{j} to t_{j}
- A pure strategy of C_{j} is one $s_{j}-t_{j}$ path per member of C_{j}
- Two selfish costs:
(i) max over all paths used by C_{j}
(ii) total i.e. sum of path delays of all members of C_{j}

SCENARIA OF IMPROVEMENT PATHS

- The "set of resources" case
- An "improvement step" of a coalition: Its members (all) may change resources in order to reduce the coalitional cost.
- Dynamic Coalitions: Imagine that an arbitrary set of players (demands) forms a "temporary coalition" just to do an improvement step.
- Unrelated resources: The player's demand depends also on the resource!

Pure Equilibria in the resources model.

Theorem: Even when resources are unrelated, even when the coalitions are dynamic, pure equilibria always exist.

Proof: Show that, starting from an arbitrary assignment, any improvement path of even dynamic coalitions of k members each has "length" (i.e. steps to reach a pure equilibrium) at most $(2 k)^{x} /(2 k-1)$

Where $x=$ sum over all players of the max of their demands over all resources.

We use a generalized ordinal potential for this.

Pure equilibria again

Theorem: Even in static coalitions (for a set of resources) and even when their number is large, it is NP - complete to find a pure Nash Equilibrium.

Small coalitions and robust equilibria

- allow dynamic coalitions of size k (say $\mathrm{k}=2,3 \ldots$... to be formed.
- a pure assignment is e.g. 2-robust if no arbitrary coalition of two players can selfishly improve its cost.
(extends to k - robust)

Note: 2-robust equilibria include all PNE of static coalitions of 2 members each.

THE ALGORITHM "SMALLER COALITIONS FIRST" (SCF)

- (Start) Arbitrary assignment of users to resources
- (loop)
(1) Allow (in arbitrary order) selfish improvement steps of any single player (1-moves)
until no such move exists
(2) If there exists a selfish improvement "move" of any pair of players then do it and go to (loop)
else we have found a 2-robust PNE
Note: Easily extends to e.g. 3-robust PNE
- Let $\mathrm{L}_{\mathrm{R}}(\mathrm{t})$ be the total load on resource R at "step" t .

Theorem: For identical resources the function $\mathrm{F}(\mathrm{t})=\sum L_{R}^{2}(t)$ is a weighted potential for SCF (2)

- This assures convergence to a 2-robust PNE in at most
$\frac{1}{2}$ (total weight) $)^{2}$ number of steps

THE PRICE OF ANARCHY

I. Coalitional chains:

Coalitions only choose from consequtive resources
Consider k coalitions each of $r=\frac{m}{k}$ tasks ($\mathrm{m}=\#$ of resources)
Assume the resources in a cycle.
Then consider the play _:
Each coalition chooses uniformly a resource at random (as a start) and assigns its r demands in r consequtive resources (e.g. clockwise)

Coalitional Chains

- _ is a Nash Equilibrium

Let $\mathrm{M}^{1}=$ resources $1, r+1,2 r+1, \ldots$ $\ldots(k-1) r+1$ (k bins)
We have k "balls" into k bins
So,

- - gives an anarchy ratio $-\left(\frac{\log k}{\log \log k}\right)$
- This is, then, a lower bound to the anarchy ratio.

THE GENERAL CASE

Lower bound
Consider the play _': (a mixed NE)
Each coalition chooses r resources uniformly at random and without replacement, and assigns one demand to each.

Lemma: For _,
(1) If $k=0(\operatorname{logm} / \log \operatorname{logm})$ then $S C\left({ }^{\prime}\right)=$ _(k)
(2) If $k=\Omega$ (logm $/ \log \log m)$ then

$$
\mathrm{SC}\left(_^{\prime}\right)=-\left(\frac{\log m}{\log \log m}\right)
$$

Note: The random variables describing the number of coalitions hitting each resource are negatively associated.

THE GENERAL CASE

Since OPT = 1, R \geq SC(_')
So, $\mathrm{R} \geq_{-}\left(\frac{\log m}{\log \log m}\right)$
However (see our paper)
Theorem: For every NE _,
SC (\quad) $\underset{(}{ }(\min \{k, \operatorname{logm} / \log \operatorname{logm}\}) \bullet$ OPT
So
We have a matching upper and lower bound for the price of anarchy. It is good when k (\# coalitions) is small.

PART II

Direct Confrontation

(The price of Defense)

[Mavronicolas, Michael, Papadopoulou, Philippou, Spirakis, 06]

A strategic game on a graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$
v attackers each chooses one vertex to occupy

1 defender chooses one edge

- The payoff of an attacker is zero if it is caught (i.e. its vertex belongs to the defender's edge) and 1 if not caught
- The payoff of the defender is the number of attackers it catches.

The Price of Defense : It is the worst - case ratio (over all Nash Equilibria) of the Optimal gain of the defender (v) over the (expected) gain of the defender at a Nash Equilibrium.

Motivation: Network Edge Security
[Markham, Payne, 01]
(A distributed firewall architecture)

- Are NE tractable?
- How does the price of defense vary with NE?
- How does the structure of G (the network) affect these questions?
- This is a confrontational game.
- No pure equilibria (unless the graph is trivial)
- Def: An edge cover of G is a set of edges touching all vertices of G .
- Def: A vertex cover of G is a set of vertices so that each edge of G has at least one vertex in the set.

Def: A covering profile is a mixed play where
(i) The Support of the defender is an Edge Cover of G
(ii) The union of the Supports of the attackers is a Vertex Cover of the subgraph of G induced by the support of the defender.
Theorem: Any NE in this game must be a Covering Profile.

Theorem: A (general) NE of this game can

 be found in polynomial time.
Proof

(1) Note the 1 attacker - defender game is a constant - sum game.
(2) Let \wedge_{-}the game with 1 attacker. Given a

NE of ${ }_{-}^{\wedge}$, let $\hat{s}(\mathrm{vp})$ be the (sub) profile of the attacker and $\hat{\mathrm{s}}(\mathrm{ep})$ the (sub) profile of the defender.

Now let all attackers use $\hat{\mathrm{s}}(\mathrm{vp})$ independently. This is a NE of the many attackers game.

"Natural" Equilibria

(i) Matching NE: all attackers use a common distribution (symmetric). All players play uniform over their support. Each attacker uses as support an independent set of the graph.
Note: The independence number $a(G)$ is the size of the maximum independent set of G.

Theorem: The price of defense in Matching Equilibria is $\mathrm{a}(\mathrm{G})$. They can be found in polynomial time.
(ii) Perfect Matching NE: If G has
a perfect matching, then use this as the support of the edge player. Else, they are matching equilibria.

Theorem: Their price of defense is $|\mathrm{V}| / 2$ (because any G admitting such an equilibrium must have $\mathrm{a}(\mathrm{G})=|\mathrm{V}| / 2$)

(iii) Attacker symmetric NE:

The attackers have a common support and each attacker plays uniformly on it.

Theorem: Such equilibria have a price of defense either $\mathrm{a}(\mathrm{G})$ or $|\mathrm{V}| / 2$

Part III

DYNAMIC ANTAGONISM IN NETS

[Nikoletseas, Raptopoulos, Spirakis, 06]
(The survival of the weakest)

- We consider a (fixed) network G of n vertices.
- k particles ($\mathrm{k} \leq \mathrm{n}$) walk randomly and independently around the net.
- Each particle belongs to exactly one of two antagonistic species, none of which can give birth to children.
- When two particles meet, they are engaged in a "local" fight (a small game).
- Can we predict (efficiently) the eventual chances of species survival?

Note:

- Classical Evolutionary Game Theory deals with multi-species competition. But its "motto" is that in each "step" any two animals are "randomly paired".
This excludes any consideration of animal motions in a restricted space.
(only neighbours can interact in networks)

We examine here a simple case

- The particles are either "hawks" (H) or "Doves" (D).
- Hawks kill doves when they meet.
- When two hawks meet they kill each other
- Doves do not harm each other when they meet.
- Doves are the "weakest" species

What is their chance of eventual survival?

Note: The chance of survival of 1 dove is a lower bound to many doves.

Note: In this particular case the question is interesting when the number of hawks is even (, if we force meetings to involve only 2 particles at a time).

The "Slow" game:

- Every individual starts on a different vertex of G .
- At each step we choose an individual at random. That particle then moves equiprobably to a neighbour vertex.
- When 2 particles meet, they play the simple game

	H	D
H	$(0,0)$	$(1,0)$
D	$(0,1)$	$(1,1)$

- The process stops when only one type of individuals remains on G.

Note:

- The slow game is a Markov process of (at most) n^{k} states.
- The slow game gives the same survival chances as any game of concurrent moves.
- We can compute the (eventual) probabilities of the absorbing states of the process in $\mathrm{O}\left(\mathrm{n}^{3 k}\right)$ time. But when $\mathrm{k}=\mathrm{k}(\mathrm{n}) \longrightarrow \infty$, this is too much time.

DIRECTED GRAPHS

Lemma: There are directed graphs, where the prob. of Dove survival is exponentially small.

Proof

For k-1 intermediate (Chain) vertices the Dove will survive with prob (1/2) ${ }^{k-1}$

UNDIRECTED GRAPHS

- We now concentrate on a single dove D

Def: Let $P_{s}(D)$ be the probability of the eventual survival of the dove.

Main Theorem (undirected graphs)

Given any initial positions I of the particles and any graph (undirected) G of n vertices then
(a) We can decide in polynomial time in n if $P_{s}(D)=0$ or not
(b) If $P_{s}(D) \neq 0$ then $P_{s}(D)>\frac{1}{\text { poly }(n)}$

Extinction graphs

Lemma: the above are the only cases for which $P_{s}(D)=0$

Some "easy" cases

1. Clique of $k-1$ hawks, 1 dove $P_{D}(s)=1 / k$
2. Cycle of 2 hawks 1 dove and n vertices

$$
P D(s) \geq 1 / n^{2}
$$

Two "hardest" graphs

Note: They are perturbations of the Extinction graphs.

Note: "Generalized" Gambler's fortune

Initial treasure: The min distance from the hawks

Ruin: when it becomes zero (before the end of game)
Note: The general case reduces to the two hard graphs cases.

A simple way to estimate $P_{D}(s)$

- Run the game till end for $\mathrm{N}=$ poly (n) times
- Let $x=$ \# times the Dove survices

Then $\mathrm{P}_{\mathrm{D}}(\mathrm{s})$ can be estimated by $\frac{x}{N}$
Note: When N is large, the estimate becomes better.
Note: It works only when $\mathrm{P}_{\mathrm{D}}(\mathrm{s}) \geq \frac{1}{p o l y(n)}$ else one needs exponentially many game simulations.

Conjecture: For directed graphs the Estimation of $P_{D}(s)$ is sharp P Complete.

Conjecture: Even in that case there is a polynomial time approximation scheme (reduce from "Graph Reliability")

What happens when Doves reproduce?
i.e.

	H	D
H	$(0,0)$	$(1,0)$
D	$(0,1)$	(a, a)

and $a>0$

Replicator dynamics:

$$
\begin{aligned}
& x_{D}=x_{D}^{2}\left(a-x_{H}-a x_{D}\right) \\
& x_{H}=x_{H} x_{D}\left(1-x_{H}-a x_{D}\right)
\end{aligned}
$$

(for the clique)

Case 1 : a > 1
 Doves dominate

Case 2: a = 1
Anything may happen (with some probability)
Case 3 : $\mathrm{a}<1$
Hawks dominate

- How do these extend to arbitrary graphs?
- We examined computational tractability questions for coalitional and antagonistic games.
- We wish to extend these considerations to a general theory
- In all our cases, the graph was fixed (imposed) How about dynamic graphs?

Thank you!

