CSS – TW1

International Workshop on Cooperation in Selfish Entities (Incorporating TagWorld I) U. Bologna, BERTINORO, Italy

COALITIONAL AND ANTAGONISTIC GAMES (ALGORITHMIC ISSUES)

Paul G. Spirakis RACTI (Greece)

May 2006

• ALGORITHMIC GAME THEORY: A new field of Research.

- Interaction among Selfish Entities
- Till now, non-cooperative strategic games
- Point of emphasis: Lack of coordination (e.g. in routing)
- Characterization and Computing of Nash Equilibria.

Complex "real life" interactions require **more**:

- Selfish coalitions (e.g. Internet providers, politics)
- **Direct Confrontation** (e.g. security)
- Antagonism

 (e.g. fitness notion in biology)

 in static but also in dynamic situations.

The algorithmic view

- Finite domains
- **Discrete time** dynamics
- Computability and Efficiency
- How to **decide**, how to **predict**
- Important parameters and concepts for measuring "how good"
- The computational face of **Complexity** (and how to cope with)
- Rigorous arguments

In this talk, new research on:

- Selfish Coalitions
- Direct Confrontation
- Antagonism in populations
- Emphasis in Models, analysis, proofs of statements
- Simplicity but non-triviality

The DELIS Project

EU 6th Framework Contract 001907

FET Proactive action: **Complexity**

"Dynamic and Evolving, Large Scale, Information Systems" (DELIS) 2005-2008

Part I

SELFISH COALITIONS

(Fotakis, Kontogiannis, Spirakis, 06)

I.I Indepentent Resources

(parallel links, machines)

m separate, identical resources

n jobs (players, users)

Each job j has an (integer) service demand w_i

Let $W = \{w_1, \dots, w_n\}$ the set of demands

Static Coalitions:

A set of $k \ge 1$ static coalitions $C_1 \dots C_k$

is a fixed partition of W into k nonempty subsets.

l.e.

- a coalition is a group of jobs
- here, coalitions do not have joint members

Idea: Each coalition is a (collective) player

Coalitions as Strategic Games

- A **pure strategy** for a coalition C_j is the selection of a resource for each of C_j's members.
- A **mixed strategy** of a coalition C_j is any probability distribution on C_i's pure strategies.
- A **configuration** is a collection _ of pure strategies, one for each coalition
- (__j, a_j) is a configuration which differs from only in C_i's pure strategy which is now a_i.

- A mixed strategies profile p is a collection of mixed strategies, one per coalition and independent of each other.
- The support of coalition C_j (in the profile p) is the set of pure strategies that C_j chooses to play with non-zero probability in p.

The payoffs

 The Selfish Cost of a Coalition C_j, in a configuration _, is the maximum demand (load) over the set of resources that C_j uses in _.

Call it _j (_)

E.g.

Let $C_j = 3$ users with demands 7, 5, 1 Let m = 10 resources $R_1 \dots R_{10}$ But C_j chooses in _ to put 7,1 in R_3 and 5 in R_8 Now in _, all others put 50 (total) in R_3 and 10 in R_8

So, _j (_) = 58

Now, let coalition C_j play (purely) its loads to some resources (pure strategy __j) Let **all other** groups play mixed strategies p.

It is reasonable to extend the **selfish cost** notion to the **conditional expectation** of the maximum demand on the resources of C_j , given that C_j has adopted __j, and the others play p.

We call it $_j$ (p, $_j$)

EQUILIBRIA

• Pure Nash Equilibrium (PNE)

A configuration _ so that for each coalition C_j and each pure strategy a_j of C_j it holds __j (_) $\leq __j (__j, a_j)$

 Mixed Equilibria: They are mixed profiles p so that for each C_j and each _j in C_j's support,

> $_{j}(p, _{j})$ is minimum (among all $_{j}(p, a_{j})$)

 Social Cost: For configuration _, the Social Cost SC(_) is the maximum load over the set of all resources.
 For mixed profiles p, SC(p) is the expectation of the maximum load. Let $_$ * a configuration that minimizes the SC(_) We call OPT the SC($_$ *).

- **Price of Anarchy** : It is the maximum value R, over all NE p, of the ratio SC(p) / OPT
- Improvement path: It is a sequence of configurations such that any two consecutive configurations in it differ only in the pure strategy of one coalition; furthermore the cost of this coalition improves in the latter configuration.

Coalitions in Networks

- G(V,E) a directed net
- Edges have delays (nondecreasing functions of their loads)
- Each coalition is again a set of demands
- Each coalition C_{j} wants to route its demands from s_{j} to t_{j}
- A pure strategy of C_j is one $s_j t_j$ path per member of C_j
- Two selfish costs:

(i) max over all paths used by C_j
 (ii) total i.e. sum of path delays of all members of C_j

SCENARIA OF IMPROVEMENT PATHS

- The "set of resources" case
- An "improvement step" of a coalition: Its members (all) may change resources in order to reduce the coalitional cost.
- **Dynamic Coalitions**: Imagine that an arbitrary set of players (demands) forms a "temporary coalition" just to do an improvement step.
- Unrelated resources: The player's demand depends also on the resource!

Pure Equilibria in the resources model.

Theorem: Even when resources are **unrelated**, even when the coalitions are **dynamic**, pure equilibria **always exist**.

Proof: Show that, starting from an arbitrary assignment, any improvement path of even dynamic coalitions of k members each has "length" (i.e. steps to reach a pure equilibrium) at most $(2k)^{x} / (2k - 1)$

Where x = sum over all players of the max of their demands over all resources.

We use a generalized ordinal potential for this.

Pure equilibria again

Theorem: Even in static coalitions (for a set of resources) and even when their number is large, it is NP – complete to find a pure Nash Equilibrium.

Small coalitions and robust equilibria

- allow dynamic coalitions of size k (say k = 2, 3 ...) to be formed.
- a pure assignment is e.g. 2-robust if no arbitrary coalition of two players can selfishly improve its cost.

(extends to k – robust)

Note: 2-robust equilibria include all PNE of static coalitions of 2 members each.

THE ALGORITHM "SMALLER COALITIONS FIRST" (SCF)

- (Start) Arbitrary assignment of users to resources
- (loop)

(1) Allow (in arbitrary order) selfish improvement steps of any single player (1-moves)

until no such move exists

(2) If there exists a selfish improvement "move" of any pair of players **then** do it and go to (loop)

else we have found a 2-robust PNE

Note: Easily extends to e.g. 3-robust PNE

• Let $L_R(t)$ be the total load on resource R at "step" t.

Theorem: For identical resources the function $F(t) = \sum L_R^2(t)$ is a **weighted potential** for SCF (2)

• This assures convergence to a 2-robust PNE in at most

 $\frac{1}{2}$ (total weight)² number of steps

THE PRICE OF ANARCHY

I. Coalitional chains:

Coalitions only choose from **consequtive** resources

Consider k coalitions each of $r = \frac{m}{k}$ tasks (m = # of resources)

Assume the resources in a cycle. Then consider the **play**_:

Each coalition chooses **uniformly** a resource at random (as a start) and assigns its r demands in **r consequtive resources** (e.g. clockwise)

Coalitional Chains

```
• _ is a Nash Equilibrium

Let M^1 = resources 1, r+1, 2r+1, ...

... (k-1)r + 1 (k bins)

We have k "balls" into k bins

So,

( \log k )
```

- _ gives an anarchy ratio _ $\left(\frac{\log k}{\log \log k}\right)$
- This is, then, a lower bound to the anarchy ratio.

THE GENERAL CASE

Lower bound

```
Consider the play _': (a mixed NE)
```

Each coalition chooses r resources uniformly at random and without replacement, and assigns one demand to each.

Lemma: For _'

(1) If k = 0 (logm / loglogm) then SC(_')= _(k) (2) If k = Ω (logm / log logm) then

SC (_') =
$$\left(\frac{\log m}{\log \log m}\right)$$

Note: The random variables describing the number of coalitions hitting each resource are negatively associated.

THE GENERAL CASE

Since OPT = 1, R \ge SC(_') So, R $\ge -\left(\frac{\log m}{\log \log m}\right)$

However (see our paper)

Theorem: For every NE _, SC (_) ≤ (min {k, logm/ log logm}) ● OPT

So

We have a **matching** upper and lower bound for the price of anarchy. It is good when k (# coalitions) is small.

PART II

Direct Confrontation

(The price of Defense)

[Mavronicolas, Michael, Papadopoulou, Philippou, Spirakis, 06] A strategic game on a graph G = (V, E)

v attackers each chooses one vertex to occupy

1 **defender** chooses one edge

- The payoff of an attacker is zero if it is caught (i.e. its vertex belongs to the defender's edge) and 1 if not caught
- The payoff of the defender is the **number of attackers** it catches.

The Price of Defense : It is the worst – case ratio (over all Nash Equilibria) of the Optimal gain of the defender (v) over the (expected) gain of the defender at a Nash Equilibrium.

Motivation: Network Edge Security [Markham, Payne, 01] (A distributed firewall architecture)

- Are NE tractable?
- How does the price of defense vary with NE?
- How does the **structure** of G (the network) affect these questions?

- This is a confrontational game.
- No pure equilibria (unless the graph is trivial)
- **Def**: An **edge cover** of G is a set of edges touching all vertices of G.
- Def: A vertex cover of G is a set of vertices so that each edge of G has at least one vertex in the set.

Def: A covering profile is a mixed play where

(i) The Support of the defender is an Edge Cover of G

(ii) The union of the Supports of the attackers is a Vertex Cover of the subgraph of G induced by the support of the defender.

Theorem: Any NE in this game must be a Covering Profile.

Theorem: A (general) NE of this game can be found in polynomial time.

Proof

(1) Note the 1 attacker – defender game is a constant – sum game.

(2) Let \bigwedge^{h} the game with 1 attacker. Given a NE of \bigwedge^{h} , let $\widehat{S}(vp)$ be the (sub) profile of the attacker and $\widehat{S}(ep)$ the (sub) profile of the defender.

Now let all attackers use $\stackrel{\wedge}{s}(vp)$ independently. This is a NE of the many attackers game.

"Natural" Equilibria

(i) Matching NE: all attackers use a common distribution (symmetric).
 All players play uniform over their support.
 Each attacker uses as support an independent set of the graph.

Note: The independence number a(G) is the size of the maximum independent set of G.

Theorem: The price of defense in Matching Equilibria is a(G). They can be found in polynomial time. (ii) Perfect Matching NE: If G has a perfect matching, then use this as the support of the edge player.
 Else, they are matching equilibria.

Theorem: Their price of defense is |V| / 2(because any G admitting such an equilibrium must have a(G) = |V| / 2) (iii) Attacker symmetric NE:

The attackers have a common support and each attacker plays uniformly on it.

Theorem: Such equilibria have a price of defense either a(G) or |V| / 2

Part III

DYNAMIC ANTAGONISM IN NETS

[Nikoletseas, Raptopoulos, Spirakis, 06]

(The survival of the weakest)

- We consider a (fixed) network G of n vertices.
- **k particles** (k ≤ n) **walk** randomly and independently around the net.
- Each particle belongs to exactly one of two antagonistic species, none of which can give birth to children.
- When two particles meet, they are engaged in a "local" fight (a small game).

• Can we **predict** (efficiently) the eventual chances of species survival?

Note:

 Classical Evolutionary Game Theory deals with multi-species competition.
 But its "motto" is that in each "step" any two animals are "randomly paired".

This excludes any consideration of animal motions in a restricted space.

(only neighbours can interact in networks)

We examine here a simple case

- The particles are either "hawks" (H) or "Doves" (D).
- Hawks kill doves when they meet.
- When two hawks meet they kill each other
- Doves do not harm each other when they meet.
- Doves are the "weakest" species

What is their chance of eventual survival?

Note: The chance of survival of 1 dove is a lower bound to many doves.

Note: In this particular case the question is interesting when the number of hawks is even (, if we force meetings to involve only 2 particles at a time).

The "Slow" game:

- Every individual starts on a **different** vertex of G.
- At each step we choose an individual at random. That particle then moves equiprobably to a neighbour vertex.
- When 2 particles meet, they play the simple game

	Н	D
H	(0,0)	(1,0)
D	(0,1)	(1,1)

 The process stops when only one type of individuals remains on G.

Note:

- The slow game is a Markov process of (at most) n^k states.
- The slow game gives the same survival chances as any game of concurrent moves.
- We can compute the (eventual) probabilities
 of the absorbing states of the process in O (n^{3k}) time.
 But when k = k(n)→∞, this is too much time.

DIRECTED GRAPHS

Lemma: There are directed graphs, where the prob. of Dove survival is exponentially small.

For k-1 intermediate (Chain) vertices the Dove will survive with prob $(1/2)^{k-1}$

UNDIRECTED GRAPHS

• We now concentrate on a single dove D

Def: Let $P_s(D)$ be the probability of the eventual survival of the dove.

Main Theorem (undirected graphs)

Given any initial positions I of the particles and any graph (undirected) G of n vertices then

(a) We can decide in polynomial time in n if $P_s(D) = 0$ or not

(b) If $P_s(D) \neq 0$ then $P_s(D) > \frac{1}{poly(n)}$

Lemma: the above are the only cases for which $P_s(D) = 0$

Some "easy" cases

1. Clique of k -1 hawks, 1 dove $P_D(s) = 1/k$

2. Cycle of 2 hawks 1 dove and n vertices

 $PD(s) \ge 1/n^2$

Note: They are perturbations of the Extinction graphs.

Note: "Generalized" Gambler's fortune

Initial treasure: The min distance from the hawks

Ruin: when it becomes zero (before the end of game)

Note: The general case reduces to the two hard graphs cases.

A simple way to estimate $P_D(s)$

- Run the game till end for N = poly (n) times
- Let x = # times the Dove survices

Then $P_D(s)$ can be estimated by $\frac{x}{N}$

Note: When N is large, the estimate becomes better.

Note: It works only when $P_D(s) \ge \frac{1}{poly(n)}$ else one needs exponentially many game simulations.

Conjecture: For directed graphs the Estimation of $P_D(s)$ is sharp P Complete.

Conjecture: Even in that case there is a polynomial time approximation scheme (reduce from "**Graph Reliability**")

What happens when Doves reproduce?

and a > 0

Replicator dynamics:

$$x_D^0 = x_D^2 \left(a - x_H - a x_D \right)$$

$$x_H^0 = x_H x_D \left(1 - x_H - a x_D \right)$$

(for the clique)

Case 1 : a > 1 Doves dominate

Case 2 : a = 1 Anything may happen (with some probability)

Case 3 : a < 1 Hawks dominate

How do these extend to arbitrary graphs?

- We examined **computational tractability questions** for coalitional and antagonistic games.
- We wish to extend these considerations to a general theory
- In all our cases, the graph was fixed (imposed) How about dynamic graphs?

Thank you!