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Chapter 7

Parameter Space Exploration

7.1 The Necessity of Exploration

One major problem encountered in Artificial Society experimentation is the role
of numerous exogenously defined parameters. In all but the simplest models, assumptions
have to be made which can’t be justified by reference to the substantive phenomena under
investigation. Because of this fact and the fact that the production of a computational
model forces the modeller to be more precise than can be justified by pre-existing theory
(if any such theory exists), these kinds of assumptions are stated as exogenously defined
parameters. This can be seen in the previous chapter (chapter 6) where many exogenous
parameters were specified for the StereoLab artificial society.

Obviously, to execute a model, values have to be substituted for these exogenous
parameters. The problem then arises: which values should be chosen? One popular method
is to arbitrarily assign values which appear ”sensible”. This is often done without any
justification of the values chosen. Although arbitrary, the method may be adequate for

”existence proof” (see figure 3.1 in chapter 3) experiments. In these kinds of experiments
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the salient fact is that at least some parameter values produce a given observable model
behaviour.

If a greater understanding of the model is required, then the role and significance
of the particular exogenous parameters need to be understood. For some given observable
model behaviour it may be useful to know the range of parameter values that give rise to it.
Such knowledge represents the beginnings of a domain theory of the model. However, even
for a small number of discrete parameters the parameter space of the model may be huge
(the product of the number of unique values over each parameter). Given that artificial
society simulation models often require substantial amounts of processing time to execute,
how can such a space be explored? The following techniques consider that a tractable set
of runs could be in the order of thousands.

As stated recently by Teran et al [156], we wish to map the envelope of simulation
trajectories over some given set of parameters. Teran et al propose a method which also
takes account of individual stochastic events - effectively exploring all possible trajectories
for some given model. This means that it is possible to prove the necessity of a particular
emergent phenomena of interest for some given range of parameter values. By necessity
is meant that all possible trajectories produce phenomenon of interest. They accomplish
this exploration by translating the simulation model into a constraint based search over all
possible agent trajectories for some given parameterisation. For a complex monolithic model
over a large number of cycles this method would be computationally intractable. However,
in the method presented, use is made of the modularity possible within a declarative model
to automatically search all trajectories for a given subset of the rules which form the model.
In this way it is possible to prove the necessity of a particular outcome for all possible

trajectories (governed by random agent choices) for the given module of the simulation.
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This method offers the exciting possibility of producing proofs rather than merely empirical
observations from simulation models. However, the computational resources required for
even relatively small sets of agents and choices is large (even for a single set of exogenous

parameter values). In the StereoLab such a method would be computationally intractable.

7.2 Sampling the Space

In the following sections several methods of sampling the parameter space are

discussed: systematic sweep, random sampling and heuristic search.

7.2.1 Systematic Sweep

One method of sampling a parameter space involves a scan or sweep of a range of
parameter values in some systematic way [3], [29]. Such a technique may be visualised as the
imposition of a grid or lattice structure over the parameter space with each line intersection
representing a single simulation run (see figure 7.1). This technique allows some conclusions
to be drawn concerning the sensitivity of observable phenomena to particular parameter
values of the model. Given one or two parameters and some one dimensional output from
a simulation run, results can be presented graphically. The input parameters and output
can be used as dimensions in a two or three dimensional space and results plotted. Regions
where particular observable phenomena are found can be identified visually (see figures 9.2
and 9.4 in chapter 9 for an example of this).

Such a scan can be easily run in parallel over several machines allowing for rea-
sonably large sample sizes to be made. The Drone software system (as used in [3] and [29])
from Michigan University has been specifically designed to facilitate the task of making

systematic scans over a parameter space of a simulation model using multiple machines in
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Figure 7.1: Systematic (or sweep scan) sampling of the parameter space and visual inspec-
tion is often used for low dimensional spaces.

parallel (see [11] for a detailed description of the Drone system).

Another benefit of systematic scanning of the space is that no assumptions need
be made concerning the nature of the space a priori. This is particularly useful with output
from non-deterministic simulations where noise and different evolutionary trajectories may
produce a space with a very non-deterministic complex surface.

However for a large parameter space with many dimensions a meaningful system-
atic scan may not be possible within a feasible time (for example, if it is not possible to
scan at least two values from each parameter). An alternative in such cases is to randomly

select points within the space up to available computational resources.

7.2.2 Random Sampling

Random sampling involves selecting parameter values at random (from a uniform
distribution) over their ranges. In this way all points have an equal chance of being selected.
Given a random sample it is possible to estimate statistical characteristics of the space. In
this way the entire space can be characterised (in a statistical sense).

As with a systematic scan, random sampling is easily amenable to parallel execu-

tion. The Drone system does not provide this facility, but software designed by the author



94

does (see section 7.5 below).

7.2.3 Heuristic Search

A more intelligent form of sampling the space may be employed. It is possible
to utilise a heuristic search if it is known in advance what kinds of points in the space are
desirable or interesting. For example, the simple local search method of ”hill-climbing” may
be employed if points of interest can be reached by maximising some observable measure
from the simulation. Hill-climbing involves starting at some random point in the parameter
space and then sampling neighbouring points until some higher value for the measure is
found. If such a point is found then this becomes the new starting point for further samping.
The process is iterated until no futher movement is possible or some computational limit is
reached. Essentially then, hill-climbing attempts to ascend gradients in the space and it will
work well in a space with long smooth gradients such that from random starting points in
the space hill-climbing can lead to global maxima. A space with many local maxima would
be less amenable to simple hill-climbing. There are many proposed methods for avoiding
local maxima in a local search such as ”simulated annealing” and ”guided-local” search (see
[159], [144]). The success of each different technique depends on the topology of the space
- there is no universal ”best search” method.

The use of a hill-climbing search therefore makes assumptions about the nature of
the space which may or may not be valid. In general the best way to test the assumptions
is to actually run hill-climbing and determine if the results are satisfactory.

Another intelligent way of sampling the parameter space is a novel method used in
the ”Weaver System” [81]. New points from the space are selected using an iterative method

based on the ”refutation of unsupported hypotheses”. The unsupported hypotheses are
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produced via inspection of an induced descision tree (see section 7.4 below for an overview
of Weaver).

For the work which follows (in chapter 8) both random sampling and simple hill-
climbing were used to sample points in the StereoLab parameter space. Random sampling
was used to characterise the huge parameter space (combined with C4.5 - see section 7.3.1
below) and hill-climbing was used to locate rare points in the space (combined with cluster

analysis - see section 7.3.2 below).

7.3 Characterising Regions in the Space

Given some sample of points from a high dimensional space (either randomly,
systematically or intelligently gathered), the problem remains of to how the points can be
interpreted such that the results can be presented in a meaningful form - relating the values
of exogenous parameters to observed behaviours. As stated previously, for a low dimensional
space with one or two dimensions, a visual method of presentation and inspection is often
sufficient for this purpose. For a high dimensional space however, this option is not possible.

One approach to aid interpretation is to locate regions within the space which
bound points with similar properties. If some subset of points in a sample can be categorised
as having a given property of interest then methods can be applied which attempt to find
approximately homogenous regions of such points in the space.

One method of specifying a region within a parameter space is to enumerate a
set of intervals, one interval for each parameter. Such a region is therefore a cuboid with
dimensions equal to the number of parameters and a volume equal to the product of all
the interval sizes. The task of identifying regions bounding points with a given property of

interest can be constructed as a process of recursive splitting of the parameter space until
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regions are found that bound points which all have the property. This is essentially the task
performed by a class of decision tree induction algorithms developed within the machine
learning community (see section 7.3.1 below).

Another method of locating regions with high concentrations of points with a
property of interest is to use some form of cluster analysis over only those points from a
sample which have the property. The result of a cluster analysis is not a set of strictly
bounded regions (as produced by decision tree induction methods) but an assignment of

each point to a particular cluster (see section 7.3.2 below).

7.3.1 The C4.5 Classification Algorithm

The C4.5 classification algorithm [139] induces decision trees from a sample over
a space of parameters (attributes) for a given categorical variable (in this case some cate-
gory of observable phenomena of the simulation run). The algorithm works by recursively
splitting the parameter space along the dimension which produces the highest ”informa-
tion gain” (based on information theory) over the sample. This process continues until a
region is homogenous (based on the categorical variable) or some minimum size (based on
the number of points in the sample which fall within a region) is reached. In the latter
stopping condition, regions may be found which are not homogenous if the minimum size
(or weight in C4.5 terminology) is more than 1. In order to apply C4.5 to a sample of the
space it is necessary to categorise each point in the sample. For a one dimensional output
value, thresholding can be used giving a set of classes over the output. Figure 7.2 shows
schematically the application of C4.5 to a random sample producing class homogenous re-
gions. Complex output requires sophisticated methods of categorisation. In the Weaver

system (see below) where the output to categories is a time series and the phenomena of
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Figure 7.2: Points sampled randomly from the parameter space can (if categorised) be
processed by the C4.5 algorithm to induce a set of category homogenous regions of the
space.

interest are various properties of the series, a human observer categorises the output. This
obviously puts practical limits on the size of any sample which can be processed since each
point in the sample requires user intervention.

In the work presented in the following chapter (chapter 8) other classification
algorithms could be used in place of C4.5 (e.g. a back-propagation multi-layer neural
network). However, one of the main benefits of C4.5 is that the induced decision tree
produced is generally more easily interpreted by a human user than the weights produced
by neural network learning algorithms. A neural network does not produce a list of regions
defined over the input space but rather a set of weights which implement a mapping. In
order to find what regions have been induced an investigation of the weights is required.

There is no simple method of extracting the induced regions.

7.3.2 Cluster Analysis

Cluster analysis techniques partition a set of points into some number of clusters.
In the analysis which follows (see section 8.2 in chapter 8) k-means clustering was used
[151]. This technique uses a heuristic search to minimise an objective function (this being

a simple form of hill-climbing). The search space consists of all possible allocations of
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Figure 7.3: Cluster analysis applied to a sample of points found via hill-climbing may be
used to find cluster centroids.

points from the sample between some specified number of clusters. Searching the space
involves the movement of points between clusters to minimise the objective function. The
objective function is based on the sum of the mean distances of all points from their cluster
centroids. Various distance metrics may be employed!, and obviously, data has to be
sensibly normalised for the given metric. It should be noted that the k-means algorithm
requires that the number of clusters is specified a priori and does not guarantee to find
the global minimum. Since this is the case it is considered prudent to run the search
several times with different initial starting conditions (initial centroid values). Also since
an a priori choice for the number of clusters needs to be made it is also often considered
useful to run k-means with a range of cluster numbers and make a choice based on the final
value of the objective function found for each clustering [151]. In the analysis which follows
(section 8.2 in chapter 8) hill-climbing was used to find points of maximum co-operation
in the StereoLab parameter space (see section 6.5.4 in chapter 6). These points were then

analysed using k-means cluster analysis. Figure 7.3 illustrates this process schematically.

In the work presented in this thesis simple Euclidean distance is used.
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7.4 The Weaver System

The Weaver system [81] is a recent application of automated induction (using C4.5)
within an integrated theory development and testing methodology (see figures 3.3 and 3.4
in chapter 3). The Weaver system has been designed for the ”development and exploration
of existing knowledge in complex, knowledge- and data-poor domains” [81]. Specifically the
system has been applied to an ecological domain: the possible causes of population cycles
in red grouse (Lagopus, Lagopus scoticus).

Weaver works with assumptions specified as enumerated (nominal) variables rep-
resenting code fragments specifying alternative model mechanisms. Weaver therefore allows
the specification of various alternative model assumptions in the form of program code units.
The system can then compose those units into a working simulation automatically (on-the-
fly) during theory development. This allows for much greater flexibility in the form that
assumptions can take than simply varying parameter values (as in the StereoLab, chapter
8). Both macro (population level) and micro (individual based) model mechanisms can be
compared.

Figure 7.4 gives an overview of the semi-automated Popperian [136] method of
”critical discussion” used by the system to explore, compare and refine theory (in the form
of a C4.5 induced decision tree). This method can be compared to the theory construction
methodology outlined in chapter 3 (see figure 3.4 in chapter 3). Notice that the user is
responsible within Weaver for classifying the outcome of simulations. This is a recognition
of the often highly qualitative and / or visual nature of such classifications. In the work
which follows for the StereoLab (chapter 8) this problem was avoided since the measure
used to classify the result of a simulation run was purposefully kept simple. However, it

would seem that for all but such simple classifications user inspection would be required and
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Figure 7.4: Theory development in the Weaver system using inductive learning and ex-
perimental reformulation (adapted from [81]). This is an application of a theoy building
methodology (see chapter 3, figure 3.4).
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this puts practical limits on the number of runs that can be processed. The application of
Weaver to the ecological domain of red grouse population cycles involved the user classifying
a population size time series into one of several category types (steady state, extinction or
various yearly cycles).

Central to the Weaver system is the domain independent ”experimental reformu-
lator”. Cleverly, Weaver searches the domain theory (induced decision tree) supplied by
C4.5 for hypotheses (leaf nodes) which are unsupported by any experimental results. A
new experiment (set of assumptions) is then generated based on the reformulation of the
most similar past experiment (in terms of assumptions) such that it covers the unsupported
hypothesis. Essentially then, Weaver attempts to refute unsupported generalisations made
by the domain theory through experimentation. This process is continued until the user
decides that the domain theory is ”stable” (that is the induced tree has changed little over
several refutation iterations).

Weaver requires that each parameter (assumption) is of a nominal enumerated
type (i.e. takes one of a set of unordered values). Continuous numerical parameters have to
be converted into nominal types which puts restrictions on the kinds of domain theory that
(4.5 can generate. It would not be possible to induce a rule of the form Al > C (where Al
is some numerical assumption and C is some constant).

Weaver was applied to an ecological domain in which the phenomenon of interest
was not sparsely distributed in the parameter space. Consequently a few initial random
samples and the application of the ”critical discussion” method of theory construction was
adequate to produce a stable and useful domain theory without requiring thousands of
runs. However, in the work which follows for the StereoLab (chapter 8) this was not the

case. High co-operation (the phenomenon of interest) was rare and therefore had to be
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actively searched for. The Weaver tool-set would therefore not be directly applicable to all
domains. Weaver is a step in the direction of semi-automation of the theory construction
methodology. It suggests the possibility that for some domains, certain methodologies can

be automated to some extent?.

7.5 The SampTool Software

Software (SampTool) was constructed which allows for sweep (linear and log scales)
and random sampling from the parameter space of a simulation. Additionally SampTool
provides simple hill-climbing over the parameter space for a specified number of steps against
a given output measure. Hill-climbing involves starting from a random point in the parame-
ter space (by executing a simulation run) and then selecting a neighbouring point at random
(executing a simulation run) and moving to that point if the result of the run is better than
the initial point. This process is iterated the specified number of steps. The neighbourhood
is defined as all points within one unit (on any number of dimensions).

Figure 7.5 shows an overview of the SampTool system. The simulation parameter
specifications file defines a parameter space for a simulation. Figure 7.6 shows an example
simulation parameter specification file for the StereoLab. Notice that the nature (input or
output), type (float or int), treatment (fixed or variable) the scale (linear or log) and the
increment interval for each input parameter is specified. The user activates SampTool by
selecting the type of sample required (scan, random or hill-climb) and the number of sample
points to make. SampTool then executes the required simulation runs. The results of the
runs are written to a sample file. SampTool provides a set of utilities that allow a sample

file to be converted for loading into other packages for analysis, visualisation, processing

It would be interesting to apply other machine learning systems, than C4.5, to simulation runs. For
example, BACON [105] which attempts to generate mathematical ”laws” which link variables.
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Figure 7.5: A schematic of the SampTool system. A general purpose tool for sampling a
parameter space. Figure 7.6 shows an example specification for the StereoLab simulation.

or storage (e.g. SPSS, MS-ACCESS, C4.5, MS-EXCEL). Each individual run within the
sample file is identified by a unique ID. SampTool can be used to re-execute any individual
run from a sample file by supplying the ID (either with the original or an alternative random
number seed). This is useful for more detailed post-hoc analysis of individual runs (to collect
time series data for example).

The SampTool schedules and executes simulations in parallel over any number
of networked machines sharing a common file-store. In the context of hill-climbing, each
machine may run an independent hill-climbing process. SampTool, like Drone (see section

7.2 above), is a general purpose tool and can interface to most simulation models®.

7.6 Summary

When exploring a large parameter space of a model two issues need to be addressed:
1) how to sample the space, 2) how to analyse the sample. In a low dimensional space it
might be possible to systematically scan the space and then visually examine the results.

This is a common method used in much simulation work. However, in a high dimensional

3See Appendix A for details.



DEF 40 "Stereotypes simulation" 1 1

#"EXECMD" stereo
# "EXEPATH" stereotest/
# "RESPATH" ./

#"name type trtlow hi scale inc fix Desc"

INP"S" int fix 0 O lin 1 101 “"number of locations in environment"

INP "N" int fix 0 O lin 1 101 “number of agents in environment"

INP “Nc"int fix 0 O lin 1 100 “number of system cycles to execute"

INP“Nr*int fix 0 0 lin 1 1 “number of runs to execute"

INP “T" floatfix O 0 lin 0.1 3 “satisfaction threshold"

INP "Pp" floatfix 0 0 lin 0 1 "PD outcome payoff value P"

INP "Pt" floatfix 0 0 lin O 5 "PD outcome payoff value T"

INP "Pr" floatfix O 0 lin 0 3 "PD outcome payoff value R"

INP "Ps"floatfix 0 O lin O O "PD outcome payoff value S"

INP "P" floatfix 0 O lin 0.1 1 “prob of satisfaction test"

INP"B" int var 4 8 lin 1 0 “number of bits in label string"

INP"M" int var 2 10 lin 1 0 “"number of stereotypes agent can hold"

INP "Pm" floatvar 0 1 lin 0.1 O “probability of meme propogation”

INP "Mt" floatvar 0 1 lin 0.1 O “mutation rate for label bits and rules"

INP "Ci" floatvar 0 1 lin 0.1 0 “factor by which to increase confidence"

INP "Cr"floatvar 0 1 lin 0.1 0 “factor by which to decrease confidence"

INP "Ms" floatvar 0 1 lin 0.1 0 “mutation size range for strategy parts -Ms to +Ms"
INP "Fg" floatvar .1 1 lin 0.1 O "prob. of a game interaction in cycle"

INP "Fc" floatvar O 1 lin 0.1 O “prob. of a cultural interaction in cycle"

INP "Fm" floatvar 0 1 lin 0.1 0 ‘“prob. of arandom agent movement in cycle"
INP "Bf* floatvar 0 1 lin 0.1 0 “proportion of bits that are fixed"

INP "Bg" floatvar 0 1 lin 0.1 0 “game label bias"

INP "Bc" floatvar 0 1 lin 0.1 0 “cultural label bias"

INP "Tg"int var 1 10 lin 1 0 ‘“refusals before forced interaction for game"

INP “Tc"int var 1 10 lin 1 0 ‘“refusals allowed forced interaction for cultural”
INP "Vc" floatvar 0 1 lin 0.1 0 “cultural interaction window"
INP "Vg" floatvar 0 1 lin 0.1 0 “game interaction window"
# "name type Desc"

OUT "CC" float "prop of mute cooperation”
OUT "DD" float "prop of mute defection"
OUT "DC" float "prop of DC interactions"

Figure 7.6: An example simulation parameter specification for the Stereol.ab
A for details of the format and meaning of the parameter specification file.
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. See appendix
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space, visualisation becomes problematic and the size of the space may make meaningful
systematic scans computationally intractable. One possible solution is to randomly sample
the space and then apply an induction algorithm to characterise regions in the space with
common properties. Another approach is to actively search the space in some way for regions
of interest. Alternatively, when a phenomena of interest is sparse within the parameter space
then a form of hill-climbing may be applicable. If hill-climbing is used then some set of
homogenous points may be located. In order to help interpret those points, cluster analysis
may be used to identify spatially distinct regions within the space. In order to facilitate
the sampling process for the StereoLab the SampTool software was constructed. SampTool
allows for systematic, random and hill-climbing sampling to be made over a parameter space
utilising multiple machines over a network. SampTool schedules execution of simulation runs
and collates the results, providing conversion utilities allowing those results to be loaded
into existing analysis packages. SampTool is a general purpose utility that can be interfaced
to most simulation software.

In the next chapter the SampTool software is applied to the StereoLab (as outlined
in chapter 6) to find regions within the parameter space which produce high co-operation.
Both random sampling combined with C4.5 and hill-climbing combined with cluster analysis

are employed.



