Abstract

Nodes in a network often store and serve
content to other nodes. However, each has a
finite capacity and if requests for specific
content exceed the capacity of the nodes
serving it then queries fail. It is generally not
possible for a priori predictions of load demand.
At given times some content may suddenly
become popular and at others hardly requested
at all. Hence over a given time period a
population of nodes has a certain total capacity
to serve requests (the sum of all individual node
capacities) and some demand load (queries
going to the nodes). Assuming nodes may
replicate content from other nodes and
delegate or redirect queries when their capacity
is exceeded we present a simple node level
protocol that leads to efficient outcomes by
dynamically adjusting, replicating and
redirecting. The approach is scalable, robust
and resistant to certain kinds of free-riding.

The CacheWorld Scenario

We assume a population of N nodes which form
a P2P overlay network. In addition to being part
of the overlay, each node functions as a server
responding to requests (queries) which come
from clients outside of the overlay network
(clients). The overlay links servers
bidirectionally if they mutually replicate content.
Two linked servers hold a copy of the others'
site. We also assume servers have access to
three services: a replication service that copies
items between servers; a peer sampling service
that supplies a random server from the overlay;
a content server that serves or redirect queries
as required. Figure 1 shows a schematic
diagram.

Query Handling

Over a given time period nodes receive queries
(load) from clients to serve their content item.
Each node has a capacity, C, specifying the
total queries it can serve in the given time
period. If the load exceeds capacity then the
node is said o be "overloaded". Overloaded
nodes redirect queries to randomly selected
neighbors.

1] 2 3]
Newscast | v
Cloud v T e
(a b \
e Ly .
g d A} e (8)
- o A - g 3 .
h)" A D) i t
» s
(4] [s] [6] 7]
» = query j = client
= replication \' = server

Fig. 1: Schematic of the CacheWorld Protocol

Contact 2
Andrea Marcozzi

Contact 1

David Hales

E-Mail: hales@cs.unibo.it
URL: www.davidhales.com

DELIS: Integrated European Project founded by the "Complex Systems" Proactive Initiative within the Sixth Framework Programme

E-Mail: marcozzi@cs.unibo.it
URL: www.cs.unibo.it/~marcozzi

Passive thread
on receiving a query q, node i:
if not overloaded, service q directly
else if neighbors > 0 and q is not
already a redirected query
j = selectRandomNeighbor()
redirect q to j
end if

Active thread
periodically each node i:
if not satisfied
drop all neighbor links
| = selectRandomPeer()
if j is receptive then link to |
end if

Fig. 20 Outline pseudocode for the protocol. The passive thread is
activated when a node receives a query either directly or redirected.
The active theread is activated periodically appoximately once per load
cycle. The value Ci represents the capacity of node i This is the
maximum number of queries it can serve per load cycle.

If a neighbor is not itself overloaded it will serve the
query from its local content replica, otherwise it will
ignore the query.

Satisfaction and Movement

Each node maintains an estimate of the proportion of
queries for its own content that are actually served
(ps). A node is said to be satisfied when ps = t where t
is some threshold value. Periodally nodes attempt to
change their neighbor (move) in the network if they are
not satisfied. Figure 2 gives outline pseudocode for
the protocol.

Experimental configuration and results

Our initial experiments have been performed with a
small number of nodes N = 50 bur we found our
protocol to be broadly scalable. In our experiments all
the nodes have a capacity of 20 (C = 20); as for the
load (query received over a given time period) 10% of
nodes had load 5, 10% of nodes had load 35, 40% of
nodes had load 15 and the remaining 40% of nodes
had load 25. This means that half of the nodes are
overloaded and half of the nodes are underloaded. We
set k=4 meaning that each node has a maximun of 4
links to other nodes. We run 10 independent run and
then took the average. Results are shown in figs 3 - 4.

QEs

0,5

Proportion
°
o

Isolated Random

Experiments

Fig. 3: Results from three experiments: /solated gives a baseline where
all nodes are isolated. Random gives a second baseline for a fixed
random network. In Dynamic the CacheWorld protocol is fully active. Q
= proportion of queries answered, S = proportion of hodes satisfied.

Dynamic

Dept. of Computer Science
Mura Anteo Zamboni 7
40127 Bologna, Italy

Fax: +39 051 2094510
Phone: +39 051 2094515

David Hales, Andrea Marcozzi -
Giovanni Cortese - University of Rome - Laboratori di Radiocoms (RadioLabs)

Overview

University of Bologna - Dept. of Computer Science

. co ® . ®
. . ®
e o9 e0 o
® o ¢ o ©
® o ® ®
@ oo ©
. _.'o.,. [2
L3
e ©°

Fig. 4: A plot of the network after 1000 cycles. Number inside nodes
indicates the needed / spare capacity. Red nodes are unsatisfied
node. Grenn nodes are satisfied. The node in the center (the yellow
one)is a “free rider" which results isolated: it always passes on its
queries when linked, it uses its own capacity when isolated.

Related Work

Several Replica Management systems already exist
and are in use. However existing systems which
manage replication (Guillaime et al), do not have
specific mechanisms for adjusting the cooperation
among nodes. For example, for balancing global
policies (i.e. the goals of the community) against
local (i.e. that of individual nodes / agents) policies.
The policies in such systems are fixed by design,
after using simulation to understand good trade-offs
in the protocol design phases. Our approach does
not represent any global policy but rather emerges
that policy based on purely individual goals and
actions. Each individual node, based on its own
satisfaction evaluation decides if to find new
replication neighbors.

Open Issues and Future Work

In our current experiments the load profile is fixed
not dynamic. Additionally, we have currently not
taken into account the cost or quality of the links
between clients requesting content and servers. We
have assumed this is constant. The current model
is, for the sake of simplicity, ignoring the cost of
replication, which is probably the highest priority
next step in our research. Also, it is not considering
the rate of “obsolesce” or updates of a content
items.

References

D. Hales and S. Arteconi. SLACER: A self-organizing protocol for
coordination in peer-to-peer networks. /EEE Intelligent Systems,
21(2):29-35, Mar/Apr 2006.

M. Jelasity, M. van Steen. Large-Scale Newscast Computing on the
Internet. Report IR-503, Vrije Universitet Amsterdam, Dept. of
Comp. Sci. 2002.

P. Guillaume and Maarten van Steen. Globule: a Collaborative
Content Delivery Network. IEEE Communications Magazine 44(8),
pp. 127-133, August 2006.

Contact 3

Giovanni Cortese

E-Mail: g.cortese@computer.org
Dipartimento di Ingegneria Elettronica

Via Arrigo Cavaglieri 26, 00173 Roma, Italy

