SLACER: Randomness to Cooperation in Peer-to-Peer Networks*

David Hales, Stefano Arteconi, Ozalp Babaoglu
Department of Computer Science
University of Bologna, Italy
{hales, arteconi, babaoglu}@cs.unibo.it

Abstract

Peer-to-peer applications can benefit from human friend-
ship networks (e.g., e-mail contacts or instant message
buddy lists). However these are not always available. We
propose an algorithm, called SLACER, that allows peer
nodes to create their own friendship networks, through ran-
domized interactions, producing an artificial social network
(ASN) where nodes share high trust with their neighbors.

1. Introduction

Human social relationships form a social network that
spans the entire globe forming a “small-world” topology
in which highly connected clusters of mutual friends are
linked to other clusters by individuals that form ‘“‘social
hubs”. Such friendship networks have desirable properties:
they tend to be cooperative and they support a number of
social functions like solving difficult problems jointly. Fur-
thermore, they are constructed and maintained in a com-
pletely distributed manner. Cooperation between nodes is
a fundamental property in peer-to-peer (P2P) networks. In
fact, given the total lack of centralized control, users can
[free-ride by not respecting the rules (e.g., leeching in a file
sharing system) with the risk of performance degradation or
even system destruction.

For these reasons social networks are a very good can-
didate topology for many P2P applications. In fact, some
P2P systems import existing social networks built and main-
tained by users in everyday life [6, 5].

Real social networks, however, are not always available,
and even when they are, relate to users’ social goals that
usually have nothing to do with those of the P2P applica-
tion.

Our approach in this work is to import network formation
processes. We let applications maintain their own social

*Partially supported by the EU within the 6th Framework Programme
under contract 001907 “Dynamically Evolving, Large Scale Information
Systems (DELIS)”.

networks tuned to their goals and we build an artificial so-
cial network (ASN) promoting cooperation between nodes
from scratch.

In Section 2 the SLACER algorithm will be described;
in section 3 some experimental results will be presented and
discussed; finally in section 4 conclusions are drawn.

2. The SLACER Algorithm

SLACER (Selfish Link-based Adaptation for Cooper-
ation, Excluding Rewiring) is an evolutionary algorithm
based on previous tag models [8, 1]. Here tags are intended
as nodes’ neighborhoods and strategy as an application-
level behavior (e.g., in a file sharing system, the Up-
load/Download ratio). A simple but significant applica-
tion to evaluate SLACER is the famous Prisoner’s Dilemma
which we describe later.

2.1. SLACER

In the SLACER algorithm, each node engaged in a spe-
cific application task generates a utility measure (U). Such
measures are strictly related to the application domain and
can be defined in very different ways according to the ap-
plication’s goals. For example, they could be defined as a
function of download speed in a file sharing scenario; as the
number of jobs processed in a distributed computing envi-
ronment; as the latency and ratio of delivered packets in a
routing protocol, etc.

The higher the value of U at a node, the more it believes
to be performing better. Each node 7 periodically compares
its utility U; with another node j, chosen randomly from
the network. If U; < U, then node ¢ drops all of his current
links with (high) probability W and copies all of j’s links
(including a link to j itself) and j’s strategy (see Figure 1).

In SLACER, all rewiring is performed in a symmetric
fashion — if node 7 makes a link to j then node j makes a
link to ¢, and on the other hand, if ¢ drops a link to j the link
from j to ¢ will be dropped as well. Each node can maintain
a number of neighbors that is bounded (called the view). If

a new node has to be added to a view that is already full, a
randomly selected neighbor has to be removed.

// Active thread
i=this node
do forever:
periodically:
j=GetRandomNode ()
if 1.0tility <= j.Utility
CopyStatePartial (j)
Mutate (1)

// Function CopyStatePartial (J)
i.Strategy=j.Strategy
drop each link from i with probability W
i.addLink (3)
for each link in j.Links:

i.addLink (1ink)

//Function Mutate (1)

with probability M mutate i.Strategy

with probability MR mutate i.Links:
drop each link with probability W
i.addLink (SelectRandomNode ())

Figure 1. The SLACER algorithm.

The idea behind the algorithm is that a node copies the
behavior of others performing better than itself and moves
from lower to higher utility zones. What arises from this is a
sort of tribalism [2] in which the network is structured into
highly clustered groups (tribes) with nodes moving to tribes
with better performance. To avoid the tribalism from be-
coming too strong, hence leading the network to partition,
each node does not drop completely all of its links when
moving, but keeps them with (low) probability 1 — W. No
specific initial topology is required: random, small-world
as well as disconnected graphs all produce the same result
— a connected and cooperative small-world topology. We
assume a random node can be sampled from the entire pop-
ulation when utility comparisons are made. This is feasible
using a lower level peer sampling service such as Newscast
[3] that maintains a connected random topology robust to
high network dynamicity.

2.2. The Prisoner’s Dilemma

In the Prisoner’s Dilemma (PD) two players interact by
selecting a move — to “cooperate” (C) or to “defect” (D)
— without knowing in advance the opponent’s move. For
each of the four possible outcomes of the game (illustrated
in Table 1), players receive the respective payoffs. The

payoffs are constrained by the relations: 7> R > P > S
and 2R > T + S. These constraints give rise to the
dilemma: both the players are pushed towards selfish
behavior (D) since a selfish player will never have a payoff
lower than its opponents’, can reach the highest payoff
and it never gets the lowest one. In other words (D,D) is a
Nash equilibrium [7] for the single round PD. On the other
hand, note that if both players cooperate, then the collective
payoff is the highest possible.

L [c[D]
CRR|ST
D[TS | PP

Table 1. Prisoner’s Dilemma payoff table.

The PD game is useful since it captures, in an abstract
form, a situation in which there is a tension between col-
lective and individual self interests. We used PD as a test
application for SLACER. In our experiments, the applica-
tion level consisted in periodically playing a single round
PD with a randomly selected neighbor. What we obtain is
that from an initial state where everyone is defecting, a co-
operation seed consisting of two or more linked cooperating
nodes is eventually produced through mutation. Suddenly,
this seed grows and expands throughout the whole network.
When a high cooperation level is achieved, it is very stable
because mutation to defection will cause the mutated node’s
neighbors to have a lower utility and to move to higher util-
ity zones isolating the defecting node.

3. Experimental Results

All of our experiments were performed using the P2P
network specific simulator peersim [4]. All of the reported
results are averages of 10 experiments, except where stated
otherwise. We set the PD payoffsto 7' = 1, R = 0.8,
P = 0.1, S = 0. We set the mutation rates to M = 0.005
and M R = 0.01. Nodes have a view size equal to 20, hence
each node can link to maximum of 20 neighbors. As stated
earlier, if a node has to add a new neighbor to its already
full view, a randomly selected neighbor is removed.

3.1. Evaluation Parameters

We describe briefly the network properties that were
evaluated in the experiments.

Clustering Coefficient. Let us define the network as a
graph with a set of vertices V' = wv1,v9...v,, and edges
E =V x V with ¢;; € E denoting a link between v; and

v;. Node i’s view is defined by N; = {v,} : ¢;; € E and
its clustering coefficient is given by equation 1.
CiZ%:Uj,UkENi,ejkEE (1
Clustering Coefficient (CC) measures the proportion of
links between the vertices within each node’s neighborhood
divided by the number of links that could possibly exist be-
tween them. In other words, it counts how many times two
distinct neighbors of a node are each others neighbor. The
entire network’s clustering coefficient is given by the aver-
age of the clustering coefficients of the single nodes.

Average Path Length. Average Path Length measures
the average number of hops needed to connect any pair of
nodes in the network.

Largest Cooperative Cluster. Largest Cooperative Clus-
ter (LCC) measures the ratio of cooperative nodes in the
largest weakly connected cluster in a subnetwork consisting
only of cooperating nodes. The highest LCC value, given by
a fully cooperative, not partitioned network, is equal to 1.

Connected Cooperative Path. Cooperative Connected
Path (CCP) measures the ratio between pairs of nodes con-
nected through paths consisting only of cooperative nodes,
and all possible pairs of nodes in the network. The max-
imum possible value is obviously 1. A network does not
need to be fully cooperative to reach the maximum value
since it could be possible to find alternative cooperative
paths to avoid defective nodes. On the other hand, a net-
work cannot reach the maximum value even if it is fully
cooperative but it is also partitioned. This is because in this
case, there are no paths between nodes in different network
partitions.

3.2. Typical SLACER Behavior

A single SLACER run is illustrated in Figure 2 to show
the trend of cooperation formation. To evaluate the tribe for-
mation process, clustering coefficient is probably the most
useful parameter. At the beginning, there are no cooperat-
ing nodes and the clustering coefficient is very low. As the
nodes start reproducing, clustering coefficient grows, mean-
ing that through rewiring a small-world like topology is cre-
ated, even if cooperation remains very low. At around cycle
150 cooperation emerges via mutation and a curious thing
happens to the clustering coefficient: it takes a low dip, sug-
gesting that as the cooperation seed is formed, many nodes
join to it lowering the clustering coefficient. This increases
network randomness since each node’s neighborhood size is
bounded. When high cooperation is reached, a high cluster-
ing coefficient is restored, indicating that a small-world like

topology created through SLACER rewiring similar to the
one present before the cooperation was achieved is reestab-
lished.

100

90
80
70
60
50

a0 |
30

20 |
o % cooperating nodes
0) clustqring cqeft (x;OO) e

0 50 100 150 200 250 300 350 400 450 500
simulation cycle

Figure 2. Cooperation trend and clustering
coefficient in a single SLACER run.

3.3. Time to Cooperation

Time needed to achieve a given level of cooperation for
different network sizes is illustrated in Figure 3. It is in-
teresting to note the inverse relation between network size
and time to cooperation: the larger the network, the smaller
the time needed to achieve cooperation. This property has
a probabilistic explanation. In fact cooperation emerges as
two neighboring nodes mutate to cooperation at the same
time and interact with each other at least once. Since muta-
tion rates and maximum view size are independent of net-
work size, it is obvious that in a larger network is easier to
create a cooperation seed through mutation and not to have
it destroyed immediately by defective neighbors.

450

cycies to 95% cooperation —+—
400 +

350 -
300 [
250 +

200 [

simulation cycle

150

100 -

50 :
1000 10000 100000
network size

Figure 3. Time to achieve 95% cooperating
nodes with different network sizes.

3.4. Tribalism

In Figure 4 two different kinds of tribalism are illustrated
by setting the link drop probability (W) to 1 and 0.9. We
measured the size of the largest cooperative cluster (LCC)
and the cooperative connected path (CCP). Notice that for
W = 0.9 the largest cluster includes almost all the nodes
and CCP is very high, indicating that no defective node
occupies a position that allows it to block a large number
of unique cooperative paths between pairs of nodes. For
W = 1 instead, there is a sort of extreme tribalism lead-
ing to a highly partitioned network, hence a very small CCP
since even if cooperation is high there are no links connect-
ing the different tribes. Also note that while W = 0.9 scales
well, for W = 1 performance decreases when network size
increases.

0.1 T 1
0.08 - 4 0.99
0.06 - - 4 0.98
()]
; _
I G
0.04 1 0.97 ;
0.02 - 1 0.96
0 0.95
1000 10000 100000

network size

Figure 4. CPP and LCC for W=1 and W=0.9.
Note the very different scales for the two ver-
tical axes.

3.5. Topology

Figure 5 shows the different topologies created by
SLACER for different network sizes. For different network
sizes the clustering coefficient remains almost constant
while average path length grows logarithmically, hence
showing good scalability properties. One interpretation of
these results is that the network remains small-world like,
with a growing number cooperating clusters.

3.6. Robustness to Churn

To test SLACER robustness to nodes joining and leaving
the network, different churn patterns have been evaluated
on a 4000-node network: a continuous substitution of ran-
dom nodes with ones that always defect (Figure 6(a)), a pe-
riodic substitution of 200 nodes every 50 simulation cycles

1 - 6.5
clustering coeff. —+—
average path length ----x----
R
0.8 - 16
<
=
= X g
3 <
8 o6t 185 =
g d g
@ A o
B 04r 15 o
3 s =
3 .
&
02t < 445
)("
0 1 4
1000 10000 100000

network size

Figure 5. Clustering coefficient and average
path length for W=0.9 as a function of network
size.

(Figure 6(b)), and a single catastrophic substitution of 2000
nodes (half of the network) every 200 cycles (Figure 6(c)).
Inserted nodes always defect and are linked to 20 (maxi-
mum view size) random nodes each in all the experiments.

The results obtained are shown in Figure 6. SLACER
recovers fast from periodic node failures while cooperation
level is decreased when there is a continuous and relatively
high dynamicity in the network. This is plausible since in
this case the network is invaded by defecting nodes at a
higher rate than it can effectively recover through repro-
duction. Nonetheless, cooperation remains stable at a rel-
atively high level. Moreover, network changes (even catas-
trophic ones) don’t affect cooperation formation. In fact, in
the reported experiment they occur before, during and af-
ter cooperation formation without causing any irreversible
performances degradation.

4. Conclusions and Future Work

The SLACER algorithm has been presented and tested
with the PD game. Previously we had demonstrated how
PD results can be translated into more realistic P2P sce-
narios (e.g. altruistic file-sharing) [2]. SLACER networks
self-organize a cooperative small-world topology, optimiz-
ing application level performance by inducing nodes to pro-
duce cooperative behavior. The key operations (utility com-
parison and node copying) are performed with randomly se-
lected nodes and are scalable with respect to network size.
We believe that existing P2P algorithms, that require exist-
ing human social networks as input [5, 6], could be made
completely autonomous by using SLACER to supply them
suitable artificial social networks (ASN).

Even though the proposed PD application corresponds
well to the problem “selfish interest versus social benefit”

0.9

0.8 -

0.7

0.6 -

05

04 -

03

0.2 -

0.1 r

cooperating nodes
) ccp

R
L

0 H L L L L L
0 100 200 300 400 500 600 700 800 900 1000
simulation cycle

(a) 20 substitutions each cycle (CCP sampled every 50 cycles)

=

1 T T T
0.9 -

08
07 1
06 i
05 .
04 .
03} .

0.2 - 4

01r cooperating nodes
/o GOP e

0
0 100 200 300 400 500 600 700 800 900 1000
simulation cycle
(b) 500 substitutions each 50 cycles (CCP sampled every 25

cycles)

1

08 | I i i i i I
0.7 |
0.6 -
05 |

04 -
0.3 A

02t i

01r ,:': cooperating nodes
N o\c s

0
0 100 200 300 400 500 600 700 800 900 1000
simulation cycle
(c) 2000 substitutions each 200 cycles (CCP sampled every 50

cycles)

Figure 6. Cooperation level and CCP for dif-
ferent churn scenarios. Results for a single
run are reported for a network of 4000 nodes.
The trend is the same for all other tested con-
figurations.

which is common to most P2P systems, it would be in-
teresting to evaluate SLACER performance when dealing
with more realistic applications. Some possible candidates
are: file sharing systems to optimize upload/download ra-
tio, content delivery networks that self organize a content
distribution policy, DHT systems to improve routing and
searching performances, and collaborative anti spam or anti
spyware systems.

References

[1] D. Hales. Cooperation without memory or space: Tags,
groups and the prisoner’s dilemma. In MABS "00: Proceed-
ings of the Second International Workshop on Multi-Agent-
Based Simulation-Revised and Additional Papers, pages 157—
166, London, UK, 2001. Springer-Verlag.

[2] D. Hales and B. Edmonds. Applying a socially-inspired
technique (tags) to improve cooperation in p2p networks.
35(3):385-395, 2005.

[3] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast com-
puting. Technical Report IR-CS-006, Vrije Universiteit Am-
sterdam, Department of Computer Science, Amsterdam, The
Netherlands, Nov. 2003.

[4] M. Jelasity, A. Montresor, and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer applica-
tions. In G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, editors, Engineering Self-Organising Sys-
tems, number 2977 in Lecture Notes in Artificial Intelligence,
pages 265-282. Springer, 2004.

[5] J. S. Kong, O. P. Boykin, B. A. Rezaei, N. Sarshar, and V. P.
Roychowdhury. Let your cyberalter ego share information
and manage spam, May 2005.

[6] S. Marti, P. Ganesan, and H. Garcia-Molina. Dht routing us-
ing social links. In IPTPS, pages 100-111, 2004.

[7] J. Nash. Equilibrium points in n-person games. Proceedings
of the National Academy of Sciences of the United States of
America, 36:48—49, 1950.

[8] R. Riolo, M. D. Cohen, and R. Axelrod. Cooperation without
reciprocity. Nature, 414:441-443, 2001.

