
From Selfish Nodes to Cooperative Networks – Emergent Link-based
incentives in Peer-to-Peer Networks1

David Hales
University of Bologna, Italy

dave@davidhales.com

1 This work partially supported by the EU within the 6th Framework Program under contract 001907 (DELIS).

Abstract

For Peer-to-Peer (P2P) systems to operate
effectively peers need to cooperate for the benefit of
the network as a whole. Most existing P2P systems
assume cooperation, relying on peers to perform tasks
that are of no direct individual benefit. However,
when large open systems are deployed such
assumptions no longer hold because by adapting
selfishly nodes may become “freeloaders” leaching
resources from the network. We present initial results
from simulations of an algorithm allowing nodes to
adapt selfishly yet maintaining high levels of
cooperation in both a Prisoners’ Dilemma and a
flood-fill query scenario. The algorithm does not
require centralized or third party reputation systems,
the monitoring of neighbor behavior or the explicit
programming of incentives and operates in highly
dynamic and noisy networks. The algorithm appears
to emerge its own incentive structure.

1. Introduction

Open Peer-to-Peer networks (in the form of
applications on-top of the internet) have become very
popular for file sharing applications (e.g. Kazaa [10],
Gnutella [4]). However, as has been shown [1], in
such file sharing scenarios we find that a majority of
users do not actually share their own files (they act
selfishly). However, these networks are still popular
because it only requires a minority to share high
quality files for all to benefit - a small amount of
altruism appears to be enough to support some level
of service for file-sharing applications. But is this
situation inevitable? Can selfish nodes be
discouraged? One solution is to have a closed system
in which we can ensure that each node runs a

particular peer application, hard-coded to be
cooperative. But this option precludes the benefits of
open systems. In open systems the protocols are open
so any node that understands the protocol can
participate. This allows for truly decentralized control
and freedom for innovation (new nodes with new
kinds of behavior may enter the network). A desirable
goal would be to have an open network with each
node benefiting from common resources yet still
(somehow) discourage free loaders.

Many possible mechanisms exist to solve this
problem such as trusted third parties [13], the
generation, storage and sharing of reputation
information [11] and the application of reciprocal
punishments (using the shadow of the future [2]) with
on-going interaction partners (in this latter instance
recent interest has focused on incentive structures [3,
14]). In each case these solutions require either the
services of some external centralized (trusted)
authority or various levels of overhead based on
tracking, storing and processing the behavior of on-
going interactions with other nodes. In the case of
incentives, an appropriate incentive system needs to
be designed a priori and on-going interactions with
other peers monitored.

The problem we are addressing here is a
“commons tragedy” [7], something that the social and
biological sciences have been exploring for some time
[8, 18, 17]. In this paper we adapt and apply some
recent mechanisms advanced within the social
sciences [5, 15, 16] that promote cooperation without
the previously mentioned overheads.

The very simple algorithm presented here requires
no such overheads but still keeps free loading at a
very low level even though nodes act selfishly and are
free to adapt their behaviors and move around the
network by changing their links to other nodes. We
find that our adapted algorithm forms a kind of

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

emergent incentive structure – without the associated
overheads.

The paper proceeds as follows: in section two we
describe the basic algorithm; in section three we apply
the algorithm to the single-round Prisoner’s Dilemma
(PD) game; in section four we simulate a more
realistic flood-fill query process in a P2P file sharing
scenario – we show how the algorithm suppresses free
riding by stopping peers from flooding the network
with queries. Finally in section five we summarize
related work and in section six we conclude with open
issues and future work.

2. Tags and the algorithm

The basic algorithm has been adapted from
previous (quite different) simulation work using
“tags”. This work demonstrates a novel method of
maintaining high levels of cooperation in
environments composed of selfish, adaptive agents [5,
6, 15, 16]. The emphasis of the previous work has
been towards understanding biological and social
systems. Tags are markings or social cues that are
attached to individuals (agents) and are observable by
others [9], often represented in models by a single
number, they evolve like any other trait in a given
evolutionary model. The key point is that the tags
have no direct behavioral implication for the agents
that carry them. But through indirect effects, such as
the restriction of interaction to those with the same
tag value, they can evolve from initially random
values into complex ever changing patterns that serve
to structure interactions. The simulated environments
in which tags have been applied have generally been
very simple with interactions based on pair-wise
games with immediate payoffs [6, 15]. Never the less,
we have attempted to adapt the salient features of
such tag systems for application in P2P networks.
These features are that agents:

• restrict interact to those with whom they share
a group defined by tag value

• selfishly and greedily optimize by
preferentially copying the behavior and tag of
others with higher utility

• periodically mutate their tags and behaviors

By copying and mutating tags, agents effectively
move between interaction groups. By restricting
interaction within groups free riders tend to kill
(reduce the membership) of their own group over time
because exploited agents will tend to move elsewhere

to get better payoffs, while cooperative groups tend to
spread via mutation of the tag. Previous tag models
have demonstrated high levels of cooperation in
“commons tragedy” scenarios (e.g. in the Prisoners
Dilemma – see below). We will not cover the results
of the previous tag models in detail here, since the
emphasis is not relevant and space precludes detailed
treatment, rather we will present our newly derived
algorithm (based on the salient features outlined
above) and the results we obtained when applying it
to two different simulated P2P scenarios.

2.1 SLAC - the basic algorithm

The basic algorithm assumes that peer nodes have
the freedom to change behavior (i.e. the way they
handle and dispatch requests to and from other nodes)
and drop and make links to nodes they know about. In
addition, it is assumed nodes have the ability to
discover other nodes randomly from the network,
compare their performance against other nodes and
copy the links and (some of) the behaviors of other
nodes.

For the purposes of this paper (as discussed
previously) we assume that nodes will tend to use
their abilities to selfishly increase their own utility in
a greedy and adaptive way (i.e. if changing some
behavior or link increases utility then nodes will tend
to select it). The algorithm relies on Selfish Link and
behavior Adaptation to produce Cooperation (SLAC)
- a rough outline is given below:

Over time nodes engage in some activity and
generate some measure of utility U (this might be
number of files downloaded or jobs processed etc,
depending on the domain).

Periodically, each node (i) compares its
performance against another node (j), randomly
selected from the population. If Ui < Uj node i drops
all current links and copies all node j links and adds a
link to j itself. Also, periodically, and with low
probability, each node adapts its behavior and links in
some randomized way using a kind of “mutation”
operation. Mutation of the links involves removing all
existing links and replacing them with a single link to
a node randomly drawn from the network. Mutation
of the behavior involves some form of randomized
change - the specifics being dictated by the
application domain (see later).

Previous tag models, on which SLAC is based [5]
have indicated that the rate of mutation applied to the
links needs to be significantly higher than that applied
to the behavior (by about one order of magnitude).

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

When applied in a suitably large population, over
time, the algorithm follows a kind of evolutionary
process in which nodes with high utility tend to
replace nodes with low utility (with nodes
periodically changing behavior and moving in the
network). However, as will be seen, this does not lead
to the dominance of selfish behavior - as might be
intuitively expected – since a form of incentive
mechanism emerges via a kind of ostracism in the
network.

3. Dilemmas on the network

Since previous tag models have demonstrated high
levels of cooperation in the single-round Prisoner’s
Dilemma (PD) game we initially test the SLAC
algorithm on this domain – in order to determine if
our adapted algorithm (for application within
networks) still produces the desirable cooperation
supporting results. The PD game captures very
minimally a “commons tragedy”. First we introduce
the PD then we describe a simulation applying SLAC
to the PD within a network scenario. Here we focus
on the single round PD not the Iterated PD (IPD). We
consider that the single round is a more general form
and form applicable to dynamic P2P scenarios (see
conclusion). In any case, we do not assume results
from the PD are necessarily applicable so we test
those results in a more realistic P2P file-sharing
scenario based on a previously presented model [14]
(see section 4 below).

3.1. The Prisoners Dilemma

The Prisoner' s Dilemma (PD) game captures a
scenario in which there is a contradiction between
collective and self-interest. Two players interact by
selecting one of two choices: Either to "cooperate"
(C) or "defect" (D). For the four possible outcomes of
the game players receive specified payoffs. Both
players receive a reward payoff (R) and a punishment
payoff (P) for mutual cooperation and mutual
defection respectively. However, when individuals
select different moves, differential payoffs of
temptation (T) and sucker (S) are awarded to the
defector and the cooperator respectively. Assuming
that neither player can know in advance which move
the other will make and wishes the maximize her own
payoff, the dilemma is evident in the ranking of
payoffs: T > R > P > S and the constraint that 2R > T
+ S. Although both players would prefer T, only one
can attain it. No player wants S. No matter what the

other player does, by selecting a D move a player
ensures she gets either a better or equal payoff to her
partner. In this sense a D move can' t be bettered since
playing D ensures that the defector cannot be
suckered. This is the so-called "Nash" equilibrium for
the single round game. It is also an evolutionary
stable strategy for a population of randomly paired
individuals playing the game where reproduction
fitness is based on payoff. So the dilemma is that if
both individuals selected a cooperative move they
would both be better off but both evolutionary
pressure and game theoretical “rationality” selected
defection.

3.2. PD on the network

In order to discover if SLAC supports cooperation
in the single round PD game we simulated the
following scenario. We initialize a random graph of
size N (with node degree k = 20). Each node stores a
single round PD strategy (either to cooperate or
defect) initially we set all strategies to defect. Time is
structured into cycles. In each cycle each node (i) is
select from the network in turn and “fired”. When i is
fired it randomly selects one of its neighbors (j). If i
has no neighbors then a node (j) is selected from the
population randomly and wired as a neighbor. Nodes i
and j then play a single-round of PD based on their
strategies and receive the appropriate payoff (either T,
R, P or S).

Figure 1: A typical run for a 104 node network

After each node has been fired (one time period)
the previously described SLAC algorithm is applied in
the following manner: N / 2 pairs of nodes (i, j) are
selected from the population at random with
replacement. If Ui > Uj then node j drops all existing
links and copies node i’s links additionally linking to
node i itself. Also j copies the strategy of i. If Ui < Uj
then the mirror process is performed (i copying j). If

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500

cycles

co
op

er
at

iv
e

no
de

s
%

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

Ui = Uj then a randomly selected node (i or j) is
designated “winner” and the process proceeds as if
that node had a higher U value. The node utility value
was set equal to the average game score obtained by a
node in the time period.

After any node i copies another node j it applies
mutation to (i.e. may randomly change) both links and
the game strategy with low probability. With
probability m, the strategy is changed. With
probability 10m the links from node i are removed
and replaced with a single link to a randomly chosen
node from the population.

We set the maximum node degree as 20 links. If
any node requires a further link then it simply
removes an existing link at random and proceeds. The
mutation rate was set to m=0.001. The PD payoffs
were set to T = 1.9, R = 1, P = S = d (where d is some
small value greater than zero) We use these values for
simplicity. When a small value is added to P
enforcing the strict inequalities of the PD then no
significant differences are observed.

3.3. Results

Figure 1 shows a time series of a single typical run
for a network of size N = 104. The y-axis shows the
percentage of nodes in the entire network that are
cooperators. Figure 2 compares a set of runs showing
the number of cycles (for different network sizes)
required to reach 99% cooperative nodes (in all cases
we initialize the population as all defectors). For each
network size 10 runs are given. As can be seen the
algorithm appears to scale without increasing time to
high cooperation (further runs to for networks of size
N > 105 showed the same results).

Figure 2: Cycles to high cooperation

It appears that the SLAC algorithm does indeed
manifest some of the desirable properties from the tag

models on which it was based. In the network
simulation given here we have achieved high
cooperation in the single-round PD game when played
with neighbors even though nodes are behaving
selfishly, trying to maximize their utility by copying
other nodes who get higher utility.

4. A file sharing scenario

In this section we outline the results of applying
SLAC to query answering in a simulated P2P file-
sharing scenario. The scenario is a simplified form of
that given in [14]. It models a flood-fill query process
where nodes periodically generate and forward
queries to their neighbors. Neighbors either deal with
the these queries (by producing a hit or forwarding it
to all their neighbors) or ignore the query.

By translating the algorithm into a more realistic
P2P file-sharing scenario we test if the previous
results obtained from the relatively abstract single
round PD game carry-over. We do not assume that
results gained in synchronous, abstracted PD type
domains will necessarily translate into the more
asynchronous and less clearly delineated utility
domains that reflect engineering realities.

After [14] each node (i) is defined by three state
variables: an answering power Ai, a questioning
power Pi and a capacity Ci, where both Ai and Pi are
in the range [0..1] and Ci takes some cardinal value
greater than zero. Each variable quantifies the
behavior of a node over some unit of time t. Ci
indicates the capacity of the node in total number of
queries (we assume that generating a query or
answering a query take one unit of capacity). Pi
givens the proportion of the capacity Ci that will be
allocated to generating new queries. Conversely, 1 –
Pi of the capacity will be allocated to answering
queries from other nodes. The answering capacity Ai
gives a probability that a node can directly match a
query (producing a hit). It represents indirectly the
amount and quality of files served by the node.

For experiments given here all nodes have fixed
values of Ai = 0.4 and Ci = 100 but we allow Pi to be
adapted by the node (see below).

Over a single time period each node i may process
a total of Ci queries. This capacity is divided between
generating Pi • Ci new queries (passed to neighbor
nodes) and reserving enough capacity to process (1-
Pi) • Ci queries from neighbors. Pi therefore
represents a kind of measure of selfishness. If Pi = 1
then node i uses all its capacity to generate new
queries - ignoring queries from neighbors. If Pi = 0

0

100

200

300

4000 8000 12000 16000 20000

nodes

cy
cl

es
 to

 9
9%

 c
oo

p

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

then i uses all its capacity processing queries from
neighbors.

4.1. Outline of a simulated time period

In a simulated time period, C • N nodes (where N
is the number of nodes in the population) are selected
randomly from the population (with replacement) and
“fired”. If a fired node still has capacity to generate
queries it generates one query and passes this to its
neighbors otherwise the node takes no action. When a
node (i) receives a query, if it has spare capacity, it
processes the query. With probability Ai a “hit” is
produced for the query. If no hit is produced the query
is passed to the neighbor nodes of i. If a node has no
capacity left to process a query it is ignored – no
action is taken. Queries are not passed on indefinitely
but have a preset “time -to-live” (TTL) after which
they are ignored by all nodes. In all experiments
presented here TTL = 3 - meaning that queries never
get more than a maximum of 3 nodes depth from the
originating node. The process of firing nodes in
random order with replacement introduces noise in
the form of some nodes firing more often than others
and some nodes not being able to generate their full
quota of queries. We view this as reasonable since it
introduces realistic kinds of noise such as non-
synchronized nodes with differential processing
speeds etc.

4.2. Application of SLAC

After each time period (that is after N • C node
firings - see above) the previously described SLAC
algorithm is applied. N / 2 pairs of nodes (i, j) are
selected from the population at random with
replacement. If Ui > Uj then node j drops all existing
links and copies node i’s links additionally linking to
node i itself. Also Pj is set to Pi (copying the query
handling behavior of i). If Ui < Uj then the mirror
process is performed (i copying j). In the case Ui = Uj
then a randomly selected node (i or j) is designated
“winner” and the process proceeds as if that node had
a higher U value.

For the experiments present here we used a utility
value equal to the total number of hits obtained by a
node in the time period. Obviously this would tend to
be higher if P was higher (generating more queries).
We used the utility value of total hits (per node) since
this gives an apparent incentive for freeloading. If the
average hits per query is used as the utility then there
is no commons tragedy – because nodes wont

generally increase their utility by performing more
queries.

After any node i copies another node j it applies
mutation, with low probability, to the links and the Pi
value. With probability m, Pi is changed to a random
value selected uniformly from the range [0..1]. With
probability 10m the links from i are removed and
replaced with a single link to a randomly chosen node
from the population (see above).

4.3. Summary of simulation scenario

For the purposes of simulation we represent the
network as an undirected graph in which the degree of
any node is fixed at a maximum value (20 in all
cases). When any operation requires a further link
from a node, the node simply deletes a randomly
chosen existing link and continues with the new link
operation. We experimented with various initial
topologies for the graph, including randomly
connected, lattice, “small world” and complet ely
disconnected. All produced similar results the ones we
present here. We also experimented with different
initial P values. Again we found we obtained similar
results (even when all P values are initially set to zero
– see later). Results given (unless otherwise stated)
start with initially random graphs and randomly
selected P values.

4.4. Results

In order to gain a benchmark which measures how
the network behaves without the application of the
SLAC algorithm we ran 10 trials for 10 cycles on
static networks with randomly initialized topologies
and P values. We did this for a number of network
sizes N = [200..51200]. All other values were kept as
previously described. Since in the static case nothing
changes, the averaging over 10 cycles is done simply
to smooth out the stocasticities of the model.
Averaging over 10 different trials (with unique
pseudo-random number seeds) smoothes out the
different initial network topologies and P values.

We considered the following two measures: the
average number of queries generated per node in a
cycle (nq) and the average number of hits per node
generated per cycle (nh). We found that with low
variance nq = 49.45 and nh = 20.13 in all cases.
Calculating nh / nq gives an average hit rate per query
generated = 0.41. We might expect nq = 0.5 since the
P values are selected uniformly randomly but this
slightly lower value is a result of the (random

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

selection with replacement) method of firing nodes as
described earlier.

Given these baseline values for nq and nh we can
investigate the effect of applying the SLAC
algorithm. If results give a consistently higher number
of hits (nh) by keeping the number of queries
generated (nq) low then SLAC is suppressing the self-
interest of the nodes and thus benefiting of the
network as a whole.

Figure 3 shows a time series for a typical run (with
a network of size N=104) with SLAC enabled.

As can be seen, over time, nq decreases and nh
increases. Notice also that initially these values move
in the opposite direction, indicating an initial favoring
of selfish behavior, but this is soon corrected. This
shows that the evolutionary process (forming
cooperative groups within the network) takes a few
cycles to get started from the initially randomly
initialized network.

Figure 3: A typical run for a 104 node network

Figure 4 shows the same measures averaged over
cycles (40-50) for different network sizes (with 10
independent runs for each network size). As can be
seen, most runs follow a similar pattern to that shown
in figure 3. However, notice that as size of the
network increases the variance of the individual runs
decreases – indicating that larger networks are less
sensitive to on-going stocasticities and initial
conditions.

Figure 5 shows the number of cycles before high
hit values are attained (when nh > 30). Again 10
independent runs are shown for various network sizes.
As before the variance of results decreases as network
size increases and there is no significant increase in
the number of cycles required for larger networks -
suggesting that SLAC scales well in this scenario also.

Figure 4: Results (averaged over cycle 40..50)
for different network sizes (10 individual runs

for each network size)

Overall then, our initial experiments suggest that
SLAC does indeed control the self-interest of the
nodes by keeping down the number of queries
generated and hence increasing the total hits overall.

Figure 5: Cycles to high hit values (nh > 30)
for different network sizes (10 runs each)

5. Related work

SLAC bears similarities to the more complex
“SLIC” algorithm [14]. However, in that work the
incentive structures are explicitly programmed, with
each node monitoring the service it receives from its
neighbors and updating weights which moderate the
future service it offers to others. There is therefore
explicit retaliation programmed into the model (as
applied in [3]). For the model presented in this paper
the incentives effectively emerge from the dynamic
behavior of the nodes (moving in the network) rather
than being explicitly programmed in. Nodes therefore
not need to monitor or store the performance of others

0
5

10
15
20
25
30
35
40

1 10 100 1000

nodes

av
er

ag
e

pe
r

no
de

queries (nq) hits (nh)

100 1000 10000 100000

0

10

20

30

40

50

60

0 20 40 60 80 100

cycles

av
er

ag
e

pe
r

no
de

queries (nq) hits (nh)

0

10

20

30

40

50

60

1 10 100 1000

nodes

cy
cl

es

100 1000 10000 100000

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

– reducing overheads. In [14] simulations are only
applied to scenarios in which single “probe nodes”
behave selfishly – nodes do not adapt their behavior
to increase their utilities network wide. Consequently
it is not clear how the model would react when all
nodes are acting selfishly rather than just a small
number (however, this is mentioned as future work).

Previous models inspired by game theoretical
approaches offer some similar insights [12] but in this
work network topology is not explicitly modeled and
the strategies relay on repeated game strategies (i.e.
tit-for-tat in the Iterated PD such). Such iterated
strategies require on-going interactions with
recognizable individuals – our model does not rely on
this since it is based on mechanisms that work well in
the single-round game.

Our model bears comparison to the social
simulation of leadership dynamics presented in [19].
However, this model is deterministic and relies on
agents knowing the strategies of others when moving.
Never-the-less, agents in the model move around a
social network, making and breaking links based on
self-interest and play the single round PD – insights
from this model may be applicable to SLAC (the
comparison process is on-going work).

6. Conclusion and future work

It seems that the desirable properties from the
previously discussed tag models [5, 6, 15] have been
usefully carried over into a dynamic network scenario.
The SLAC algorithm potentially offers a very
generally applicable mechanism for controlling selfish
behavior in many possible P2P task domains –
without the need to program and test explicit
incentive mechanisms for each domain. In the work
presented here the SLAC algorithm effectively
emerges an incentive mechanism from the selfish
moving behavior of the nodes - by ostracizing selfish
nodes over time. This happens because although a
selfish node may do well for a while it will tend to
lose its exploited neighbors as they find other nodes
that are members of more cooperative groupings and
hence have higher utilities.

These results are more generally applicable than
strategies based on the iterated PD (IPD) such as tit-
for-tat (TFT) because no past or future interaction
with the same nodes is required. This is of particular
value in highly dynamic networks where nodes are
constantly entering and leaving – hence interacting is
often with strangers. Additionally, this saves on the
overhead of remembering past interactions or

identifying specific nodes. All this adds to flexibility
and scalability.

Interestingly if we imagine SLAC being deployed
in a more stable network (or sub-network) in which
nodes did practice TFT-type strategies then SLAC
would perform as well as TFT players – since
cooperation would be rewarded with cooperation.

Currently however, SLAC requires some a priori
utility function that can be evaluated by each node
and (perhaps less realistically) compared between
nodes. It also requires that nodes can copy the
behaviors and links of other nodes. This latter process
can be interpreted in two ways, like [12] we can say
that this process represents the selfish behavior of
users – copying (possibly modified) peer-client
software that appear to offer increased performance
increases. If we offer this interpretation then the
higher mutation applied to the links over the
behaviors (recall these were set 10 times higher – this
carried over from the tag models) implies that peers
can change links more quickly than client software.
This certainly makes sense since adapting software is
generally time consuming (mutation on behaviors) but
changing links may not be (simply resetting peer-
clients). An alternative interpretation is that the
process is an automatic peer level process. In this case
the assumptions of node copying may be unrealistic
and raise a number of security issues.

We have not tested SLAC against the introduction
of “whitewashers” [12] - nodes that never change
their behavior from selfish options. We have assumed
that nodes will act greedy and adopt behaviors that are
producing higher utility for other nodes – even if
those behaviors are non-selfish. Future work will test
the robust of the model against various proportions of
whitewashers – we speculate that some proportion of
the population will be tolerated but that a large
number may significantly damage the formation of
cooperation in the system.

In the worse case it would seem that “smart”
whitewashers that constantly probe for higher scoring
neighborhoods, exploiting and then moving on could
be the worse enemies of a SLAC like approach. In
order to deal with such problems it is necessary to
place clear limits and interpretations on when and
how nodes get access to other nodes for copying.
Again this is on-going work.

Here we have presented only some initial
experiments with simulations of SLAC. Although
these look encouraging more investigation is required.
For example, in the previous tag algorithms on which
SLAC was based – it was possible to visualize the

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

formation and dissolution of cooperative groups over
time and even to characterize analytically, some of
the properties (such as time to cooperation). However,
it is unclear how to do this on a graph topology, where
groupings overlap. A start along this line would be to
begin to characterize the topological evolution of the
network. Some of our very initial results in this
direction suggest that the network tends to become
disconnected into a number of components – this
might have implications for the applicability of SLAC
in many domains – but this is under investigation.

The experiments presented here suggest that the
SLAC algorithm may offer potential for reducing
freeloading in P2P networks and / or understand why
such freeloading is not already dominating some
existing networks. In either case we believe that our
initial results are promising. Our continuing work will
address the open issues, specifically to make SLAC
more realistically applicable to actual task domains.

References

[1] Eytan Adar and Bernardo A. Huberman Free Riding on
Gnutella. First Monday Volume 5, No. 10. 2000.

[2] R. Axelrod The Evolution of Cooperation, Basic
Books, New York. 1984.

[3] B. Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics in Peer-to-Peer Systems,
2003.

[4] Gnutella. http://www.gnutella.com/
[5] D. Hales. Cooperation without Space or Memory:

Tags, Groups and the Prisoner' s Dilemma. InMoss &
Davidsson, (eds.) Multi-Agent-Based Simulation. LNAI
1979:157-166. Springer. Berlin. 2000.

[6] D. Hales. & B. Edmonds. Evolving Social Rationality
for MAS using "Tags", In Rosenschein et al. (eds.)
Proceedings of the 2nd International Conference on

Autonomous Agents and Multi-agent Systems,
(AAMAS03), ACM Press, 497-503. 2003.

[7] Garrett Hardin "The Tragedy of the Commons,",
Science, 162:1243-1248. 1968.

[8] Thomas Hobbes, Leviathan, ed. by J.C.A. Gaskin,
Oxford, 1998.

[9] J. Holland. The Effect of Labels (Tags) on Social
Interactions. Santa Fe Institute Working Paper 93-10-
064. Santa Fe, NM, 1993

[10] Kazaa. http://www.kazaa.com
[11] S. D. Kamvar, M. T. Scholosser, and H. Garcia-

Molina. The eigentrust algorithm for reputation
management in p2p networks. In the 12th International
WWW Conference, 2003.

[12] K. Lai, M. Feldman, I. Stoica, and J. Chuang.
Incentives for cooperation in peer-to-peer networks. In
Workshop on Economics of Peer-to-Peer Systems,
2003.

[13] MojoNation. http://www.mojonation.com
[14] Qixiang Sun & H. Garcia-Molina SLIC: A Selfish

Link-based Incentive Mechanism for Unstructured
Peer-to-Peer Networks. In Proceedings of the 24th
IEEE international Conference on Distributed
Systems. IEEE computer Society. 2004.

[15] R. L. Riolo, M. D. Cohen. & R. Axelrod. Evolution of
cooperation without reciprocity. Nature 414, 441-443.
2001

[16] K. Sigmund. & M. A. Nowak. Tides of Tolerance.
Nature 414, 403-405. 2001.

[17] J. Maynard Smith. Evolution and the Theory of
Games. Cambridge University Press. Cambridge.
1982.

[18] R. Trivers. The evolution of reciprocal altruism. Q.
Rev. Biol. 46, 35-57. 1971

[19] M. G. Zimmermann, Victor M. Egufluz and Maxi San
Miguel. Cooperation, adaptation and the emergence of
leadership. In `Economics with Heterogeneous
Interacting Agents' , pp. 73-86, A. Kirman and J.B.
Zimmermann (eds.), Springer, Berlin. 2001.

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

	footer1:

