
Towards Cooperative, Self-Organised Replica Management∗

David Hales, Andrea Marcozzi
University of Bologna

Dept. of Computer Science
Bologna, Italy

{hales, marcozzi}@cs.unibo.it

Giovanni Cortese
University of Rome

Laboratori di Radiocoms. (RadioLabs)
Roma, Italy

g.cortese@computer.org

Abstract

Nodes in a network often store and serve content to other
nodes. However, each has a finite capacity and if requests
for content exceed the capacity then queries fail. It is gen-
erally not possible for a priori predictions of load demand
because at given times some content may suddenly become
popular and at others hardly requested at all. Hence over
a given time period a population of nodes has a certain
total capacity to serve requests (the sum of all individual
node capacities) and some demand load (queries going to
the nodes). Assuming nodes can replicate content and redi-
rect queries we present a simple node level protocol that
self-organises nodes into cooperative clusters leading to ef-
ficient outcomes in some simple scenarios. The approach
is scalable, robust and self-organising but there are several
open issues. We present this as work-in-progress.

1. Introduction

As demand for information increases, centralized servers
become a bottleneck. Content providers, system admin-
istrators or end users cope with the problem by distribut-
ing replicas of content to machines scattered throughout
the network. Replica Management refers to the problem
of deciding how many replicas of each file to distribute, and
where to place them. Enough replicas should exist to handle
the cumulative demand but with too few replicas, servers
become overloaded, and clients see reduced performance.
Conversely, extra replicas waste bandwidth and storage.

Our approach uses a simple protocol that dynamically
self-organises clusters of servers that mutually replicate
content and redirect queries in order to share load. We have
adapted a protocol from a previous abstract model which
tested behavior using a simple interaction game (the Pris-

∗This work is partially supported by the EU within the 6th Framework
Programme under contract 001907 (DELIS).

oner’s Dilemma) to capture the contradiction between indi-
vidual and social goals [1]. We present initial simulation
work and discuss what needs to be done to refine the model
towards a plausible implementation.

2 The CacheWorld Scenario

We assume a population of N server nodes which form
a peer to peer (P2P) overlay network. In addition to being
part of the overlay, each node functions as a server respond-
ing to requests (queries) from clients outside of the overlay.
An example could be that each node is a web server with the
overlay linking the servers and clients being web browsers
on user machines. Servers store a copy of their own content
item (e.g. a website) and have additional storage for k repli-
cated items from other servers. The overlay links servers
bidirectionally if they mutually replicate content. In our
website example this would mean two linked servers hold
a copy of the others’ site. We also assume servers have ac-
cess to three services: a replication service that copies items
between servers; a peer sampling service that supplies a ran-
dom server from the overlay; a content server that serves or
redirects queries as required. Figure 1 shows a schematic
diagram.

2.1 Query handling

Over a given time period nodes receive queries (load)
from clients to serve their content item. Each node has a
capacity, C, specifying the total queries it can serve in the
given time period. If the load exceeds capacity then the
nodes is said to be “overloaded”. Overloaded nodes redi-
rect queries to randomly selected neighbors. If a neighbor
is not itself overloaded it will serve the query from its lo-
cal content replica, otherwise it will ignore the query. The
essential idea therefore is that overloaded nodes will have
neighbors that are not overloaded and can serve queries.



1 2 3

4 5 6 7

a b
c

d e f g

h i j

Newscast

Cloud

= client

= server

= query

= replication

Figure 1. CacheWorld scenario. Server nodes
service queries from clients. All server nodes
are within a Newscast cloud and may link to
other nodes in a P2P overlay. Neighbors mu-
tually replicate content. Overloaded nodes
redirect queries neighbors.

2.2 Satisfaction and movement

Each node maintains an estimate of the proportion of
queries for its own content that are actually served (ps). A
node is said to be satisfied when ps ≥ t, where t is some
threshold value. Periodically nodes attempt to change their
neighbors (move) in the overlay network if they are not sat-
isfied. When a node i moves, it drops all its current links
and selects a random node, j, from the population. i then
attempts to link to j. The link is accepted if j is in a recep-
tive state. A node is defined as receptive if it is currently not
satisfied or if it has spare capacity which is unused. This
captures the notion that a node only wants new connections
if it is either not satisfied or if it has spare capacity to offer.
If a receptive node accepts an incoming link but already has
the maximum k links then it drops a randomly selected old
link to make space for the new link. Figure 2 gives outline
pseudocode for the protocol.

As stated previously, when two nodes link they mutually
replicate each others content. Hence movement implies a
cost due to the replication process. Currently we do not
model this cost in terms of reduction of node capacities.
However we do measure the amount of movement that oc-
curs (see later).

3 Simulation Specifics

A simulation model was implemented within the Peer-
sim1 system, an open source P2P systems simulator plat-

1http://peersim.sourceforge.net

Passive thread

on receiving a query q, node i:

if not overloaded, service q directly

else if neighbors > 0 and q is not

already a redirected query
j ! selectRandomNeighbor()

redirect q to j

end if

Active thread

periodically each node i:

if not satisfied

drop all neighbor links
j ! selectRandomPeer()

if j is receptive then link to j

end if

Figure 2. Outline pseudocode for the
CacheWorld protocol. The passive thread is
activated when a node receives a query, the
active thread is activated periodically - once
per load cycle.

form. Our initial experiments have been performed with a
small number of nodes N = 50. However, we found our
results to be broadly scalable. We ran tests up to N = 104.
For our initial experiments we chose two very simple node
loading and capacity scenarios (described in section 3 be-
low). First we explain the structure of the simulation model.

Peersim divides time into cycles (we call these Peersim
Cycles). Some number of Peersim cycles constitutes what
we term a Load Cycle. In each Peersim cycle each node i
is fired, in random order, and may receive a client query. If
a query is received, it will be answered directly if the node
is not currently overloaded. If the node is overloaded it will
redirect the query to a randomly selected neighbor node if it
has one. The neighbor node will then answer the query or,
if it is also overloaded, will ignore it.

The number of queries (load) given to each node 1..N
in one Load Cycle constitutes what we call the Load Profile
L. For a node i, Li specifies the load for that node. If L
specifies the same value for each node then all receive the
same number of queries and their load is equal. Variation
in loads between nodes indicates that some nodes receive
more queries than others. Each node also stores an indi-
vidual capacity value, Ci, that specifies the total number of
queries it can serve over a Load Cycle. The set of all Ci ca-
pacity values for all nodes 1..N constitutes what we call the
Capacity Profile C. Hence the sum of all Ci values consti-
tutes the total system capacity, TC, which is the maximum
number of queries the system as a whole can serve in one
Load Cycle.

At the end of a Load Cycle each unsatisfied node con-



siders moving in the overlay with probability mp = 0.1. A
node is not satisfied if the proportion of queries, it directly
received from clients, that were eventually served, ps, is be-
low threshold t. Here we set t = 1 for all nodes, so a node
is only satisfied if all of its queries are served. We cur-
rently do not model how nodes calculate the proportion of
answered queries but assume some service or method exists
to approximate it. Movement follows the scheme previously
described.

We simulated two very simple query load scenarios on
the nodes. In each case the node capacities were evenly
distributed but the query loads were not. This means some
nodes were overloaded and some under-loaded. In bother
cases the Capacity and Load Profiles stay constant.

In the first scenario we set the Capacity Profile such that
all nodes had capacity C = 10 queries and the Load Profile
such that half the nodes had a load of 15 and the other half
5 queries. This means half the nodes are under-loaded by 5
and half are overloaded by 5. We set k = 1 for this scenario
meaning that nodes only maintain a single link and therefore
form pairings rather than complex network topologies.

In the second scenario we set the Capacity Profile such
that all nodes had C = 20 and the Load Profile such that
10% of nodes had zero load, 10% of nodes had load 40,
40% of nodes had load 15 and the remaining 40% of nodes
had load 25. This means that, like the first scenario, half
the nodes are overloaded and half are under-loaded. But
here nodes are over- or under-loaded by different amounts.
This makes coordination a little more tricky than in the first
scenario. We set k = 4 meaning that nodes maintain a
maximum of four links to other nodes.

In all cases experimental results were produced by col-
lecting results from 10 independent simulation runs that
ran for 1000 load cycles each. To asses performance we
recorded three measures, Q,S and M . Q gives the propor-
tion of queries actually served as proportion of all submit-
ted; S gives the proportion of nodes satisfied and M the
amount of node movement as a proportion of the node pop-
ulation per load cycle. Q and S were calculated as averages
over all runs for the last 500 cycles indicating performance
after some level of stability is reached. M was calculated as
an average over the entire 1000 load cycles indicating how
much node movement (and hence replication effort) was re-
quired to reach and maintain the given performance.

4 Results

We present results from three different experiments (iso-
lated, random and dynamic) for each of the two load sce-
narios. The Isolated experiments gives a performance base-
line by running the simulation with all CacheWorld services
turned-off: no links between nodes, no query redirection
and no movement. This captures the situation where nodes

simply answer their own queries and do not know about
other nodes. The Random experiments give a secondary
baseline. Here the overlay is initialized to a random topol-
ogy (degree k) that is fixed - i.e. no node movement is pos-
sible. However, nodes my redirect their queries to neigh-
bors if they become overloaded. In the Dynamic experi-
ments the CacheWorld protocol is fully enabled allowing
for dynamic node movement based on satisfaction, as pre-
viously described. By comparing Random and Dynamic ex-
periments we can determine how much extra performance
dynamic movement produces over just a fixed random over-
lay. By comparing Isolated and Dynamic experiments we
can determine the overall increase in performance obtained
by using CacheWorld over letting servers deal with all their
own queries individually.

Results for scenario one are shown in figure 3. For the
Isolated experiments we found, Q = 0.75, S = 0.5 with
negligible variances. This is what we expected given the
Load and Capacity Profiles. For the Random experiments
we initialized the overlay network to a random topology
with k = 1. This gives a further baseline showing how
well a purely random approach performs. As might be ex-
pected there was some improvement because nodes have
the chance to share load. We found Q = 0.79, S = 0.58.
Finally in the Dynamic experiments the full CacheWorld
protocol is used allowing movement by unsatisfied nodes.
Again the initial topology of the overlay is randomly gen-
erated as before but nodes can change the topology over
time by movement. We found improved performance with
only 1% of queries not answered. We found Q = 0.99,
S = 0.98, again variances were negligible. This improve-
ment in performance comes at the cost of node movement
(nodes making and breaking links to other nodes in the over-
lay). More movement occurs in the early Load Cycles and
then the network settles to a more stable state. We found
M = 7.2 × 10−4 which equates to a total of 36 node
movements over 1000 cycles. This indicates that that a
relatively small amount of movement suffices to improve
performance. The main result here is that turning on the
CacheWorld protocol improves total queries served, Q, by
24%, keeping 98% of nodes satisfied and resulting in only
a small amount of node movement and hence replication
effort. However, this is a very simple loading scenario in
which load and capacities are constant and optimal pairs of
nodes are easy to find so we would expect good results and
indeed the scenario was selected as a minimal test.

For the second load scenario we conducted the same set
of experiments. The results are shown in figure 3. No-
tice that for both the Isolated and Random experiments we
gain comparable values for the number of satisfied nodes S
but higher values for queries answered Q. This is due to
the unbalanced nature of the load distributed and capacities
which gives higher loads and capacities to some nodes. For



0.75
0.79

0.99

0.50

0.58

0.98

0.0

0.5

1.0

isolated random dynamic

experiments

p
ro
p
o
rt
io
n

Q S

0.80

0.88
0.92

0.50

0.56

0.98

0.0

0.5

1.0

isolated random dynamic

experiments

p
ro
p
o
rt
io
n

Q S

Figure 3. Results from three experiments for
load scenario one (upper chart)) and two
(lower chart). The scenarios are described
in section 3 and experiments are described
in section 4. Q = proportion of queries an-
swered, S = proportion of nodes satisfied.

the Dynamic case we found Q = 92 and S = 98. How-
ever, more movement occurs compared to scenario one. We
found M = 9.5×10−3 which equates to a total of 475 node
movements over the 1000 cycles. This indicates that an or-
der of magnitude more movement is required to obtain the
performance increase in this more tricky, yet still relatively
simple, scenario.

5 Discussion and future work

The idea behind CacheWorld is that the movement of
nodes in the overlay network leads to the formation of clus-
ters of servers that replicate each others content and deal
with redirected queries. Elsewhere we have called similar
formations tribes [1]. A stable tribe is one that satisfies
all of its members otherwise they will move away and over
time the tribe will dissolve. Stable tribes comprise nodes
with complementary loads (i.e. loads that tend to be neg-
atively correlated). This may be plausible when demand
for content follows daily patterns. Peers then would effec-
tively supplement capacity for daytime load peaks in one
time zone with spare overnight capacity from another.

In these initial experiments we have considered loads
where an equal number of nodes are either under- or over-
loaded consistently so stable clusters can easily emerge.
The results then, show, that at least in these simple sce-

narios our simple node movement heuristic is sufficient to
produce stable clusters giving high performance. Although
the scenarios are simple, we placed a 100% load on the sys-
tem and set all node satisfaction thresholds to 100%. This
means that the system only fully stabilizes when 100% of
capacity is utilized.

A number of open issues need to be addressed. We have
not tested the system under realistic query load (highly dy-
namic and skewed) and we have only modeled nodes hold-
ing a single monolithic content item (rather than many small
items). We have not extensively tested the system with free-
rider nodes that do not replicate, or serve queries, from oth-
ers. However, initial experiments (not shown here) indicate
that the system punishes free-riders because they need to
move more often (twice as often as non-freeriders) because
they tend to become isolated2.

Several Replica Management systems already exist and
are in use. However existing systems (e.g. Squirrel
[3], Globule [4]), which manage replication, do not have
specific mechanisms for adjusting the cooperation among
nodes. For example, for balancing global policies (i.e. the
goals of the community) against local (i.e. that of individ-
ual nodes / agents) policies. The policies in such systems
are fixed by design. We aim to examine the applicability of
augmenting these existing systems with our simple protocol
to improve adaptability.

Our aim is to produce a distributed, scalable, robust and
self-organising protocol. Our approach is not to guarantee
optimality or absolute security but rather to produce very
simple protocols utilising, where possible, existing tech-
nologies that perform reasonably well over a range of con-
ditions.

References

[1] D. Hales and S. Arteconi. SLACER: A self-organizing
protocol for coordination in peer-to- peer networks.
IEEE Intelligent Systems, 21(2):29-35, Mar/Apr 2006.

[2] M. Jelasity, M. van Steen. Large-Scale Newscast Com-
puting on the Internet. Report IR-503, Vrije Universiteit
Amsterdam, Dept. of Comp. Sci., Amsterdam, 2002.

[3] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized peer-to-peer web cache. In Proc. 21st
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), 2002.

[4] Guillaume Pierre and Maarten van Steen. Globule: a
Collaborative Content Delivery Network IEEE Com-
munications Magazine 44(8), pp. 127-133, August
2006.

2Free-riders were modeled as nodes that never answered other’s queries
and always redirected their queries, even when they had capacity.


