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Abstract

Many unstructured peer to peer (P2P) systems rely on a
Peer Sampling Service (PSS) that returns randomly sampled
nodes from the population comprising the system. PSS pro-
tocols are often implemented using “gossiping” approaches
in which connected nodes exchange their links in a random-
ized way. However, such services can be defeated easily by
malicious nodes executing “hub attacks” which distort the
PSS such that all nodes in the network, ultimately, only gain
access to malicious nodes. From this leading status - i.e.
being a “hub” - the malicious nodes can affect the overlay
in several ways, ranging from total network disruption to
obtaining an application dependent advantage. We present
a completely distributed defense against such attacks and
give results from simulation experiments. The approach is
generic as it is independent of the adopted PSS implemen-
tation.

Keywords: P2P, overlay, security, gossiping.

1 Introduction

P2P systems, without central servers, need to provide
some method of initiating and maintaining connections be-
tween the nodes that comprise them such that all nodes form
a single component. A partitioned network reduces the ef-
ficiency of the system, for many tasks, because nodes in
different components cannot communicate. This can be a
significant problem in unstructured systems which operate
under highly dynamic environments with nodes constantly
entering and leaving the system.

One general approach to this problem is to implement
a protocol that maintains a connected overlay network be-
tween nodes which approximates a random topology. An

∗Partial support for this work was provided by the European Union
within the 6th Framework Programme under contract 001907 (DELIS).

overlay network topology consists of each node maintain-
ing logical links to other nodes. A logical link consists of a
node identifier that is sufficient to establish communication
using some underlying network infrastructure (e.g. and IP
address and port number over the Internet).

It is well known that a random network topology can
maintain a fully connected network that is highly robust to
benign node and link failure. Additionally, a random net-
work offers short paths between any two nodes in the net-
work which is valuable for many kinds of P2P tasks (e.g.
broadcasting or routing messages between nodes).

A specific method for maintaining robust overlays with
random-like topologies is through gossiping. Gossiping
protocols rely on the randomized spreading of information
between neighbors in a network. Typically, nodes maintain
a set of neighbor links (a so-called cache or view) which
indicates their currently neighbors. Periodically, each node
selects some random neighbor from its view and commu-
nicates some information – i.e. gossips – which the receiv-
ing node may store and later forward to its own neighbors.
The approach is loosely analogous to individuals in a social
network gossiping between themselves or the spread of an
epidemic in a population.

Gossip approaches are attractive because they spread in-
formation quickly and robustly over networks yet require
only simple protocol implementations. A number of gossip-
based protocols exist to maintain random overlay networks
in unstructured P2P systems [4, 13]. Although implemen-
tations vary, the basic mechanism involves nodes gossip-
ing their current neighbor links. In this way, using suit-
able update functions in the nodes, the cache (or view) can
be kept up-to-date and maintain a random-like connected
topology under conditions of high dynamism – where nodes
constantly join and leave the network.

Ironically, however, the power of the gossip approach
to spread information quickly over the entire network can
become an achilles’ heel if it is exploited by malicious
nodes who wish to defeat the system by spreading false
information to partition the network. Because information
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(a) A healthy random graph topology (b) The graph after malicious attack

Figure 1. Overlay topology before and after a simple attack: the random graph depicted in (a) be-
comes fully disconnected in (b). The graph out-degree (constant) is set to 20, but only 3 links per
node are displayed for clarity. Less than 20 gossiping cycles are required to disrupt the graph.
Network size is 1000 nodes.

spreads so quickly in gossip networks the problem for non-
malicious nodes is that by the time they identify other nodes
as malicious it is too late for them to take action since they
are already disconnected from the network - i.e. their view
is completely polluted by the malicious nodes.

We show that by maintaining multiple views over the
network (multiple neighbor lists) nodes can identify mali-
cious nodes before it is too late such that they can take ap-
propriate action by placing them on an individually main-
tained black-list. The approach is adaptive, allowing for-
mally blacklisted nodes to be white-listed if their behavior
changes and vice versa. In addition no reputation informa-
tion must be shared between nodes because blacklists and
white-lists are only individually maintained. In other words,
we present a fully decenralized Secure Peer Sampling Ser-
vice (SPSS).

Previously, we proposed a centralized SPSS approach
and obtained good results [6]. However such an approach
requires one or more central trusted servers which present a
single point of failure and/or add administrative overhead.
We found that our distributed approach produces compara-
ble results without producing such overhead.

The remainder of this paper is organised as follows: we
describe a “hub attack” scenario in which several collud-
ing malicious nodes are sufficient to completely partition
a network using a gossip based protocol. We describe our

gossip network model, followed by a brief description of
the PSS implementation adopted. Then, we outline our pre-
vious centralised approach to tackle the problem and then
the distributed protocol. We perform simulations that test
the effectiveness of the distributed approach and compare
it with the centralised approach. Finally, we briefly survey
related work and conclude with a summary, open issues and
possible future work.

2 Hub attack scenario

Here we describe an example of an attack scenario appli-
cable to a gossiping topology maintenance approach. This
attack is a form of the so-called “hub attack” (see [6]) and
its effect is summarized in Figure 1. In a hub attack ma-
licious nodes attempt to get other nodes to connect exclu-
sively to them. If this is achieved, then the malicious nodes
can exit the network leaving their former neighbors with-
out any valid neighbors and hence partitioning them from
the network. To illustrate the problem, consider a gossiping
network in which each node maintains a list of c neighbors
(c = 20, see Section 3), called its cache or view. When
the network is performing correctly the peers are wired in
a random graph topology with out-degree c and the graph
is continuously rewired over time. The elements of these
caches are continuously updated and exchanged between



nodes during gossiping interactions.

At some point, k nodes in the system (e.g., k = c in
the example) start colluding and behaving maliciously ex-
changing forged caches; then, after a short amount of time
spent in their malicious activities, they leave the network.
The forged caches exchanged by the attacker nodes hold
the identifiers of the other malicious nodes; this exact mali-
cious content of the cache is always replayed at every gossip
exchange.

Figure 1(a) shows the overlay in normal conditions; Fig-
ure 1(b) shows the same graph after the malicious nodes
exit: within a very short time the original overlay is com-
pletely disrupted. The infection rate proceeds quickly, as
can be expected from a gossiping protocol. In fact, every
well-behaving node will accept the attacker’s cache with
high probability (see Section 5); this means that in just one
exchange a node will have all its cache polluted by mali-
cious identifiers if it is directly connected to a malicious
node. In other words, all its neighbors are now malicious
nodes and it can no longer initiate a gossip exchange with a
non-malcious node.

Only a nondefeated, nonmalicious, node B can help a
defeated one, say A, provided B has As identifier in its lo-
cal cache. However, when B contacts A, we can expect
that after the exchange half of the local caches of A and
B, respectively, will be polluted with identifiers of mali-
cious nodes. As a consequence, both nodes will have 50%
of their cache polluted; therefore, even contacting a non-
malicious node will generally also spread the pollution and
increase the chance that a nondefeated node contacts a ma-
licious one.

There is no way for a nonmalicious node to identify a
malicious one as they seem to play fairly; however, as the
attackers always pass on the same cache (or a very similar
one), it is easy for any node to keep track of the last cache
provided by a neighbor in order to detect them. Sadly, when
a non-malicious node detects the bogus cache replayed by
the same neighbor, it is too late to react since the node cache
is completely filled with malicious identifiers. When each
node’s cache is completely polluted, the malicious nodes
may decide to leave the network, leaving it in a completely
disrupted state without any hope of recovery, as shown in
Figure 1 (b).

This example refers to a small, 1000 nodes network, but
as we have shown in previous work [6], no matter what the
size of the network, a successful attack can be carried out
swiftly. In this section we have introduced the general idea
of a hub attack as applied to a gossip based topology man-
ager service. In the next section we specify in a little more
detail the generic gossip protocol approach and the specific
protocol variant we used for the purposes of our simula-
tions.

3 Gossip and attack model

We consider a network consisting of a large collection
of nodes that can join or leave at any time. Leaving the
network can be voluntary or due to a crash. We assume the
presence of an underlying routed network (e.g., the Internet)
in which any node can, in principle, contact any other party.
Any node in the network must be addressable by a unique
node identifier (ID), such as an 〈IP-address, port〉 pair. We
do not address the presence of firewalls and NAT routing
among peers.

Due to scalability constraints, a node knows about only
a small subset of other participants. This subset, which may
change, is stored in a local cache, while the node IDs it
holds are called neighbors. This set provides the connec-
tivity for a node in the overlay; the relation “who knows
whom” induced by the neighborhood set defines the over-
lay topology. The absence of items in the cache or the pres-
ence of incorrect or bogus IDs leads to an unrecoverable
situation. In this case, a new initialization or bootstrap is
required. In general, P2P applications provide a set of well-
known, highly available nodes in order to provide a boot-
strap facility and hence the initial neighborhood set.

In general, a timestamp is associated with each distinct
node ID stored in the cache in order to eventually purge
“old” ID references according to an aging policy.

The notion of time in our model is not strict because our
gossip protocols need not be synchronized. We measure
time in generic time units or cycles during which each node
has the possibility to initiate a gossip exchange with another
randomly selected node from its local cache.

In our attack model, we consider a practical scenario in
which a small set of colluding malicious nodes or attack-
ers play in the system. The size k of this set is equal to the
cache size (k = c) in the worst case. The goal an attacker is
to subvert the network in order to become a hub. The attack
method involves the spreading of fabricated data through
the messages gossiped among the participants which affects
the logical links of the overlay. We suppose the attackers
are “clever”, in the sense that they operate in a beyond sus-
picious manner, in order to avoid being easily discovered.

A malicious node runs the actual PSS implementation as
any other well-behaving node, but the content of its mes-
sages is fabricated with a specific (malicious) intent. At ev-
ery gossip exchange it always replays a message containing
the forged IDs of other malicious nodes in the system. This
behavior is perfectly valid from a PSS point of view, as the
only mandatory constraint is that cache entries are distinct.
This intrinsic weak integrity constraint complies to reality;
in real-world P2P file-sharing systems (see [8,11,12]), when
a peer receives an advertisement for an item.

Other lower level details of the attack model have been
extensively discussed in [6]. We use the following terminol-



while(TRUE) do
wait(∆t);
neighbour = SELECTPEER();
SENDSTATE(neighbour);
n state = RECEIVESTATE();
my state.UPDATE(n state);

while(TRUE) do
n state = RECEIVESTATE();
SENDSTATE(n state.sender);
my state.UPDATE(n state);

(a) Active Thread (b) Passive Thread
Figure 2. The epidemic or gossip scheme.

ogy: the pollution is the presence of IDs of malicious nodes
in a peer’s cache. A node is defeated if all the entries in
its cache refer to malicious nodes (i.e., 100% polluted) and
an overlay is defeated or destroyed if it is completely parti-
tioned (e.g., each peer has no more neighbors as depicted in
Figure 1(b)).

In this work, we adopted a specific implementation of the
PSS called NEWSCAST. However, our approach is generic
and can be applied to any PSS implementation. Before in-
troducing our SPSS approach in detail, we provide a brief
background of NEWSCAST.
Newscast protocol: NEWSCAST is a gossip-based proto-
col heavily inspired by the prototypal gossip scheme de-
picted in Figure 2. It is a topology manager protocol that
builds and maintains a continuously changing random graph
(or overlay). The generated topology is very stable and pro-
vides robust connectivity. This protocol has been a suc-
cessful building block for implementing several P2P pro-
tocols [3, 5, 7].

In NEWSCAST, each node maintains a cache containing
c IDs extended with a logical timestamp (ts) representing
its creation time. The protocol behavior follows strictly the
gossip scheme; periodically, a node A does the following:
(i) it selects a random peer B from its local cache; (ii) then
updates its local timestamp; and (iii) performs a cache ex-
change with B. The exchange involves sending A’s cache
along with its own ID and receiving B’s cache and ID.

After the exchange, each party merges the received cache
with its current one and keeps the c “freshest” IDs as mea-
sured by the timestamp associated with each ID. The only
requirement imposed to a cache is that no multiple copies
of the same ID are allowed.

This exchange mechanism has three effects:
1. caches are continuously shuffled, creating a topol-

ogy with a low diameter that is close to a random
graph with out-degree c. Experimental results (see [4])
proved that a small 20 elements local cache is already
sufficient for a very stable and robust connectivity.

2. the resulting topology is strongly connected.
3. the overlay is self-repairing, since crashed nodes can-

not inject new descriptors any more, so their infor-
mation quickly disappears from the system due to the
timestamp aging policy.

NEWSCAST is also cheap in terms of network communi-
cation (see [4]). Essentially, the number of exchanges per

cycle can be modeled by the random variable 1+φ, where φ

has a Poisson distribution with parameter 1. Thus, on av-
erage, we expect two exchanges per cycle. Practically, this
involves the exchange of at most a few hundred bytes per
cycle for each peer.

4 Centralized SPSS

In our previous work on preventing the hub attack [6],
we designed the SPSS as an extension to the ordinary PSS.
We summarize here the basic concepts of our previous work
in order to introduce our new SPSS approach.

The system requires the presence of a central Certifica-
tion Authority (CA). The CA is not involved in the proto-
col itself; it is just needed to acquire the credentials and to
join the overlay. We cryptographically secure each ID struc-
ture using [IDA, tscreation, tsexpiration,PKA,σ], where IDA is
A’s node identifier (see Section 3), the ts are timestamps,
PKA is A’s public key and σ is the digital signature on the
message.

The key idea relies in the introduction of a new prim-
itive, checkids(), to verify whether the exchanged states
(caches) are valid for further processing, such as merging
with other caches. Essentially, the checking process has a
stochastic nature and it is based on the fact that the attack-
ers always replay the same cache or at least the same sub-
set of malicious nodes. The probablity to raise a suspicion
is proportional to the fraction of the common IDs found:
(#common IDs) / c. When the check fails, a suspicion about
the potential malicious neighbor is raised and delivered to a
TRUSTED PROMPT node; it is similar to a proxy of the Certi-
fication Authority and provides peer credential management
and access control.

The TRUSTED PROMPT collects the requests sent by any
well-behaving node P and builds a table by logging (or up-
dating) an entry #(P) in a frequency table indicating how
many times P has been reported as suspect. Finally, the
TRUSTED PROMPT builds a new cache of size c for the query-
ing peer. To build the new cache, the TRUSTED PROMPT

picks nodes randomly from the network. A node Q is se-
lected for inclusion in a cache proportional to 1−#(Q)/N,
where N is the (estimated) size of the network. A lower
value in the frequency table corresponds to a higher chance
to be present in the cache (and to be a nonmalicious node).

When considering the scalability of our approach, one
may come to think that a single TRUSTED PROMPT is going
to be a source of problems, but we have shown (see [6]) that,
in order to improve the resilience of our distributed system,
we can use multiple TRUSTED PROMPT nodes without intro-
ducing any modification to our basic algorithm. In addition,
we have shown that the message traffic generated by the
queries in a large network can be sustained by just a sin-
gle TRUSTED PROMPT. However, the trade-off between the
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Figure 3. Schematic of the decentralized
SPSS; it maintains multiple caches to sup-
port multiple random overlays. Black and
white-lists screen incoming gossip requests
and refresh malicious cache entries.

robustness and the extra effort spent in deploying, configur-
ing and maintaining many TRUSTED PROMPT nodes must be
evaluated by the overlay designers.

5 Decentralized SPSS

We believe that the main shortcoming of our centralized
SPSS solution is that the deployment of trusted nodes over
the Internet, in order to sustain our secure gossip system, is
a viable approach only for organizations or companies with
trusted administrative control.

In other words, the TRUSTED PROMPT approach requires
some extra trusted infrastructure that complicates the sys-
tem deployment and maintenance. Using the simplest setup,
i.e., using a single TRUSTED PROMPT, we minimize the de-
ployment issue, but produce a single point of failure. If the
single TRUSTED PROMPT is hacked or crashes then the whole
network is vulnerable to attack.

A fully decentralized solution would be preferred as it
would lower the burden to design and to deploy secure gos-
sip systems and would not require trust external to the sys-
tem (other than the CA which is external to the protocol),
but is this possible to achieve? And what kind of trade-offs
do we need to consider? Our aim is to refactor our previous
approach in order to obtain a fully decentralized solution,
in which each node has the chance to detect the malicious
nodes using its own resources.

Multiple overlays: As we have seen the main obstacle to
prevent and detect the hub attack is represented by its high
spreading speed. Such a high speed leaves no time to the
peers to make any successful guess about the identity of the

attackers. This is why in our previous SPSS solution we rely
on the TRUSTED PROMPT assistance.

The basic idea for the fully distributed SPSS is based on
using multiple, concurrent instances of the PSS. Therefore,
each node participates in multiple overlay graphs, and the
neighborhood at every instance will be distinct with very
high probability because the overlays have independently
random-like topologies. Essentially, the multiple caches
over the same node population, which every node adopts,
give each peer a snapshot of what is going on in distinct
(random) neighborhood of the overlay. We call extra caches
the set of caches belonging to each peer; every cache in the
set is a random snapshot of a distinct PSS overlay

We assume the same attack model as before: a set of
k colluding attackers, but running multiple PSS instances as
well, will pollute all the available instances. This hypothesis
makes our scenario more challenging.

Each node can monitor the pollution ratio by looking at
its extra caches. Since the network population of all the
PSS instances is the same, all the extra caches will become
polluted by the same k malicious node IDs, if no checking
action is performed. However, an attacker can pollute at
most only a single node’s cache at a time per overlay. In ad-
dition, due to the random nature of the available overlays,
it is very unlikely that an attacker could defeat all caches of
the same victim peer in a short time window. Essentially,
the multiple caches are useful in order to perceive how ma-
licious node are spreading the infection from distinct direc-
tions over distinct overlays. Due to the spreading infection,
we expect that common node ID patterns will emerge in all
(or in the majority) of the caches.

Quality rating: Each peer can build a set of statistics in
order to guess or detect who are the malicious nodes from
the emerging patterns. This knowledge base is stored as pri-
vate, local black- and white-lists that it is never exchanged
among neighbors (see [11]). This obviates the second-order
issue of malicious nodes spreading incorrect reputation in-
formation.

During a gossip exchange, both parties rate the quality
of the exchange. The quality rate is given by the number
of items lying in the intersection of the exchanged caches
among node A and B: r = |{cacheA ∩ cacheB}|. This qual-
ity rate influences the probability to conclude the gossip ex-
change with this current neighbor. Essentially, when two
caches are similar (or identical) it is likely that the current
neighbor is a malicious node and with high probability it
should not be accepted. The probability to abort the ex-
change is proportional to the fraction of the common IDs
found among the two caches: r/c, where c is the usual cache
size.

The rank results are collected in the node’s knowledge
base. The information collected in this structure is refreshed
according to an aging policy to avoid that any wrong guess



would have unbounded consequences over time.
Any attempt to exchange with a neighbor (black-) listed

as a high frequency and low quality rated node is declined.
In addition, when a node suspects one of its caches is pol-
luted, it tries to refresh the cache randomness by substi-
tuting the currently blacklisted node IDs with high quality
rated node IDs collected during the previous exchanges (if
any).

During the protocols execution, one or more cache can
be defeated by the attackers. However this is not critical, as
the cache will be restored as soon as the node has collected
a suitable knowledge base. It is very unlikely that all node’s
caches become polluted in a short amount of time; in this
unlucky condition and if the knowledge base is not ready or
not correct, the only chance for a node is to be contacted
by a well behaving node in order to partially restore at least
one of its caches. This is the exact situation we have in the
previous SPSS version. Figure 3 shows a schematic of the
main components maintained by the protocol within each
node.

The algorithm: Our distributed approach is focused on
the knowledge base each node has to build. Essentially,
the knowledge base is represented by two list structures:
BLACKLIST and WHITELIST; the former holds high fre-
quency and low quality rated node IDs, while the latter
holds high quality rated node IDs. We do not set any ex-
plicit size limit for these structures and, as a consequence,
their size may grow to the actual network size. However,
due to presence of an aging policy, their actual size is much
less than the theoretical maximum. The SPSS algorithm
pseudo-code executed by a node A is the following:

1. Select a random neighbor B /∈ BLACKLIST, if any
2. Compute the rank value r with B; proportionally to r/c

decline and blacklist B, otherwise accept the gossip ex-
change, and:

(a) whitelist B
(b) perform the standard PSS exchange with B

These steps are performed in each cycle for every avail-
able cache. Two additional actions are performed concur-
rently by two threads at the end of each cycle. The first
action is to purge the BLACKLIST and WHITELIST according
to an aging policy; the second action instead, is to repop-
ulate the caches suspected of being polluted (if any): each
node ID in the cache listed in the BLACKLIST is substituted
by a random node ID picked from the WHITELIST.

Another issue is to clarify how node IDs can be in-
serted and swapped from the BLACKLIST to the WHITELIST

and vice-versa. When a node ID has to be inserted in the
BLACKLIST for the first time, a standard TTL value (2 cy-
cles) is bound to the stored ID; if the ID is already present
instead, its TTL value is reinforced (i.e., dubling the current
TTL value). This reinforcement process is needed in order

to keep in the BLACKLIST the most frequent node IDs (with
a poor rate).

About swapping the IDs among the two structures, sup-
pose node B’s ID is already in node A’s WHITELIST, but
now node A had to insert B’s ID into its BLACKLIST. B’s
ID is removed from A’s WHITELIST and it is inserted in
the BLACKLIST. In other words, the BLACKLIST has more
authority than the WHITELIST. Likewise, if node A has to
whitelist node B’s ID, but it is already in A’s BLACKLIST,
the swap between the two list is not allowed until B’s ID
is purged from the BLACKLIST. This rule is designed to
avoid that a node’s PSS instance exchanging with a mali-
cious node for the first time, would not overwrite a possible
correct suspicion made by a more experienced instance.
Why it works: It is important to note that having multiple
caches belonging to distinct PSS instances is very different
from having a single PSS with a possibly huge cache. Mul-
tiple caches add extra randomness to the node’s state and
avoid to be defeated in just one exchange; in addition, in
extreme conditions (i.e., when the set of attackers is larger
than the cache size, see section 6) they stil give the chance
to identify the attackers.

The value added by multiple PSS overlays is that the in-
fection proceeds from distinct multiple paths. These dy-
namics gives each peer more time to detect the most fre-
quent node IDs that appear in their caches.

A higher-level protocol working on top of this fully dis-
tributed SPSS can see just a single cache, in order to main-
tain a seamlessly integration with the standard PSS API. A
smart implementation of the fully distributed SPSS can dy-
namically export the current best cache according to con-
centration of suspected malicious nodes currently listed in
the knowledge base (see Figure 3).
Evolutionary link: The multiple caching concept origi-
nates from previous socially inspired evolutionary models
of “group selection” [1, 2]. In these models anti-social be-
havior between nodes was avoided by allowing nodes to
form and move between different clusters or groups in the
population based on utility value comparisons. Essentially,
nodes evaluated the quality of their neighbors by measuring
the effectiveness of interaction with them over time – in-
volving some application level task – and represented this as
a utility value. By comparing utilities with other randomly
selected nodes and copying the neighborhoods (caches) of
those with higher utility, nodes could avoid interaction with
anti-social free-riding nodes. In this approach nodes main-
tained a single overlay and made intra-overlay movements
to find better (higher utility) neighborhoods.

For the distributed SPSS we implemented a similar
scheme by allowing each node to store multiple caches and
only selecting the best cache based on a measure of utility
expressed as cache quality. From the point of view of what
is passed to the API, nodes are constantly shifting between
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Figure 4. Fully decentralized SPSS algorithm. The average pollution level in the caches is shown over
time; multiple distinct caches per node are compared (i.e., 1, 2, 4 and 8 caches) for each network
size (i.e., 1,000, 5000 and 10,000 nodes). 20 malicious nodes are involved in the attack.

different views of the network since each cache represents
a different set of neighbors. Furthermore, when the quality
for a particular cache becomes low due to possible identifi-
cation of malicious information, it is wiped and reinitialized
from the white-list, hence low quality caches are dropped.

Hence in SPSS nodes do not move between distinct
groups or clusters in a single overlay but maintain and effec-
tively move between distinct overlays (inter-overlay move-
ment) comprising the same population of nodes but in dif-
ferent topological configurations. Hence what is being se-
lected here by each node is the overlay which produces the
best cache quality at each given point in time. Since all
nodes actually stay in all overlays at all times (by maintain-
ing a fixed number of multiple caches) this approach is less
a form of evolution and more a form of redundancy with
dynamic selection.

6 Experimental results

In order to evaluate our new approach, we investigate
the following main issues: (a) how much time is required
to achieve a tolerable1 amount of pollution in the node’s
caches, (b) how many extra caches are required to prevent
the attack, (c) how the performance scales according to the
number of the extra caches adopted, (d) the performance
of our approach in terms of communication cost; finally,
we are also interested in (e) the performance when the hub
attack is played by a larger number of k malicious nodes
(k > c).

If not stated explicitly, in the following evaluation, we
have considered the usual scenario for a hub attack: when
the number of malicious nodes k is equal to the (single)
cache size (k = c = 20). All the results are averaged over 10
experiments.

1We consider the pollution in a tolerable range if the graph does not
split into clusters when the malicious nodes leave.

Static environment: Figure 4 shows the average pollu-
tion level in the node’s caches for each considered network
size (1,000, 5,000 and 10,000 nodes respectively). In this
scenario, we consider a static network in which both mali-
cious and well-behaving nodes are not subject to crashes;
also network links are considered perfect and without mes-
sage loss. Each plot shows a SPSS setup using a distinct
number of concurrent caches per node; we have shown the
results for 1, 2, 4 and 8 caches setups. As a reference, we
also plotted what happens when no attack countermeasures
are taken (see the solid topmost line in each chart). Of
course, when nothing prevents the malicious node’s activi-
ties, the cache pollution level quickly reaches 100%. When
the distributed SPSS is run with just one cache, the pol-
lution level monotonically increases; the smaller network
becomes defeated in about 50 cycles because a degree of
20 is quite high compared to its size. However, this setup
cannot be considered a full countermeasure since we still
use only a single cache. Essentially, the blacklist mecha-
nism is not sufficient per se in order to recover the network.
By using two or more concurrent caches per node, the sit-
uation changes dramatically. Two caches are already suf-
ficient to recover the network, regardless the network size.
In all cases, the pollution level is never dangerous. Here,
by dangerous, we refer to a level over which the network
would suffer from partitioning if the malicious nodes leave
the network; in general, this happens when the cache pol-
lution is ≥ 75% (see [6]). By increasing the number of
caches, we further lower the pollution, however, especially
in the bigger network, the advantage in the adoption of 8
instead of 4 concurrent caches is almost negligible. In addi-
tion, a pollution level below 20% does not pose any threat of
partitioning the network. For this reason, according to our
experiments, we consider the 4 extra caches setup a good
tradeoff between complexity and effectiveness.
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Figure 5. Fully decentralized SPSS under churn conditions. The average pollution level in the caches
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Figure 6. Comparison among our previous
TRUSTED PROMPT based SPSS and the current
decentralized one (4 extra caches). Two dis-
tinct churn scenarios are shown for each
one. Network size is 10,000.

Churn: Figure 5 shows the performance of the SPSS un-
der churn. We measured the average pollution level in the
node’s caches for each distinct network size (1,000, 5,000
and 10,000 nodes). We allowed three distinct churn set
sizes: 1%, 5% and 10%, respectively; this amount of nodes
leaves the network at every cycle and it is substituted by
an equal number of new participants. The malicious nodes,
however, stay in place and attempt to pollute caches for the
whole duration of the experiment. Note that these values
are actually quite high [9], but will allow to demonstrate the
feasibility of our solution. Each node has a 4 extra caches
setup.

It is surprising to see that the dynamism of the network
helps the SPSS to keep the pollution level low. In fact, the

level is lower than in the static scenario, for all the consid-
ered network sizes. In addition, a higher level of dynamism
corresponds to a lower level of pollution. The reason lies
in the fact that there is a higher proportion of fresh nodes
injected in the system with a very low probability of having
a malicious ID in cache; the well-behaving nodes that work
in system for a longer time, will hardly diffuse the mali-
cious IDs as they have already blacklisted them with high
probability. Therefore, it becomes harder and harder for the
malicious nodes to diffuse their bogus caches.

Essentially, on average no well-behaving node will play
in the system enough time to detect successfully all ma-
licious nodes, but this total knowledge is not required at
all. The knowledge of who are the malicious nodes is dis-
tributed over the system as a whole; in other words, it is suf-
ficient that every attacker is known by some healthy node.

In Figure 6, we show a comparison between our previ-
ous centralized TRUSTED PROMPT based SPSS and the new
decentralized one in the dynamic environment. The setup
of the decentralized SPSS consist of 4 extra caches. We
adopted two churn set sizes: 1% and 10% of the network
population. The lines marked with the symbols +, × and
∗ depicts the decentralized SPSS, while the standard lines
depict the TRUSTED PROMPT version. The cache pollution
levels achieved are quite similar. The new version has a
small disadvantage when the churn rate is low (e.g., 1%).
However, in the worst case the pollution reaches a stable
10% and it is far from a critical range. In other words, we
do not run the risk to have the network partitioned if the
malicious nodes leave. In general, the decentralized SPSS
achieves a more stable pollution level than the centralized
version.

Message overhead: The main advantage of the decentral-
ized version over the TRUSTED PROMPT based one, is the
minimal message traffic cost. In fact, we avoid the traffic



generated by the queries sent to the TRUSTED PROMPT (e.g.,
about 1,000 of queries per cycle in a 10,000 nodes network).

Using NEWSCAST as implementation, the cost is n times
the cost of each PSS instance; as the average number of ex-
changes per node can be modeled by the random variable
1+φ (see [4]), where φ has a Poisson distribution with pa-
rameter 1; the overall node cost per cycle is: ∑

n
i=1 PSSi =

∑
n
i=1 1+φi = 2 ·n .

Extreme conditions: We are interested in verifying the
tolerance limit of our approach in terms of number of col-
luding attackers and to make a comparison with the cen-
tralised approach. In the previous section we have seen that
the decentralised SPSS can recover the overlay when k = c
malicious nodes and n≥ 2 caches are involved. This perfor-
mance is given by the redundancy of the node’s state. The
experiments shown in Figure 7 depict the performance of
the (decentralised) SPSS when k > c malicious nodes are
involved in a 10,000 nodes network.

Figure 7(a) shows what happens in the extreme case in
which k = c · n attackers are injected in the network. Es-
sentially, we consider to pollute all the extended state of the
node. As before, we consider c = 20 the size of a single
cache and n the number of caches adopted; we considered
2, 4 and 8 caches, corresponding to 40, 80 and 160 mali-
cious nodes respectively. The effect of the presence of c ·n
attackers grows much faster than the benefit given by the
multiple caches.

We may come to think that having k = c · n attackers is
the same as the single cache case (k = c · 1, see Figure 4),
but, instead, the multiple cache presence allows the decen-
tralised SPSS to slowly recover the network. However, the
recovering process can be very slow and, more important,
the pollution level grows over the dangerous level, depicted
by the thick horizontal line, with any number of caches; if
the attackers leave, the network will be severely partitioned.
Basically, when the whole state can be polluted by a suffi-
ciently large set of malicious nodes, the performance is bad
(i.e., the network can be partitioned), but the decentralised
SPSS is not paralysed as it is still capable of detecting the
attackers.

In Figure 7(b), we check how many malicious nodes
can be tolerated by a SPSS using 2 caches. We are inter-
ested to know the maximum number of attacker we can
successfully tolerate, according to the actual redundancy
(caches), without exceeding the threshold represented by
the horizontal line. With this set-up, the system can tolerate
k = c · 1.5 = 30 malicious nodes. However, as can be ar-
gued by the situation depicted in Figure 7(a), an increment
of the state redundancy (the number of the caches) has a less
than linear increment in the number of tolerable attackers.
When considering k = c · n attackers, the centralised ver-
sion is successful as the TRUSTED PROMPT handles the node
states; therefore, the node states can always benefit from an

extra state help.

7. Related work

In our previous work [6], we surveyed the literature
about attacks in overlay networks. Here, we just remind
the attacks that are closely related with the hub attack.

The index poisoning attack [8] focuses on lowering the
quality of the indexes that map hash keys to current file lo-
cations in file-sharing applications. A poisoned index, for
example, may contain hash keys that refer to nonexisting
or nonaccessible files. works because many P2P systems
do not check the integrity of their indexes. Index poison-
ing can be applied to structured as well as unstructured
overlays. However, in contrast to a hub attack, index poi-
soning affects only the overall QOS, but otherwise allows
applications to continue functioning correctly. A typical
countermeasure is to authenticate or rate the sources that
insert keys. In [10] the authors combine the previous in-
dex poisoning attack with poisoning routing tables in DHT
file-sharing systems. This combination leads to an effec-
tive denial-of-service (DOS) attack. In this case, a selected
victim host is referenced by many other (poisoned) overlay
participants, effectively signficantly increasing the proba-
bility that a message will be routed to the victim. As in our
attack, poisoning routing tables disrupts the topology. The
main difference is that in the hub attack, a malicious node
will first need to obtain a leader position before the attack
can be carried out successfully.

8 Conclusion

We have presented a decentralised secure peer sampling
service (SPSS) which maintains the underlying random
overlay in the presence of malicious nodes playing the hub
attack. We compared our results with those obtained from a
previously developed centralized method and obtained sim-
ilar results.

On one hand, the decentralised approach gives up the
presence of the TRUSTED PROMPT, while on the other
hand allows each node to store a redundant state (multi-
ple caches). This achieves our goal to build a fully decen-
tralised and lightweight solution in terms of communica-
tion cost. avoid the extra infrastructure requirement and
the costs associated with flux of queries delivered to the
TRUSTED PROMPT. We have seen that by allowing nodes
to maintain a number of independent overlays they can halt
the spread of malicious information by identifying the ma-
licious source nodes before it is too late to take action. We
found that this resulted in a situation in which no healthy
node knows about every malicious node but every malicious
node is known by some healthy nodes. This is sufficient
to stop the attack from being successful. This insight may
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Figure 7. Pollution levels in extreme conditions. In (a), k = c · n attackers are involved; 2, 4 and 8
caches are considered. In (b), the maximum tolerable number of attackers, using 2 caches, is shown.

have implications for counteracting other kinds of infection
spreading over networks and this is possible future work.
The centralised SPSS achieves better results - i.e., is suc-
cessful - when the entire node state is polluted (k = c · n
attackers, with n = 1 in the centralised case). However, the
TRUSTED PROMPT manages the node states and we can say it
is part of the node state in some sense. Essentially, until the
TRUSTED PROMPT is up and running the node’s state it is not
really completely polluted. In the decentralised approach
instead, if the full state - i.e., all the caches - becomes pol-
luted (k = c ·n attackers, with n > 1 caches) the network is
exposed to partitioning if the malicious nodes leave the net-
work; nevertheless, the system does not becomes paralysed,
but it can still slowly recover. We have shown an example in
which we identify the maximum number of malicious nodes
that can be tolerated for a particular n cache set-up.

In essence, these two approaches are two distinct
philosophies that privileges distinct aspects. We do not
claim that our SPSS is secure against other attack scenar-
ios such as “Sybil attack” variants or more complex collu-
sive attacks. Rather we propose a relatively generic and
lightweight solution for plugging the obvious vulnerabil-
ity of gossip based protocols to simple hub attacks. SPSS
therefore has applications for augmenting several proposed
protocols that currently rely on unsecured gossip based PSS
such as [1, 3, 5, 7].
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