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ABSTRACT
Current peer-to-peer systems rely on user intervention to in-
stall and update the software (protocols) that run on each
node. We propose another direction where protocols are dy-
namically and automatically rolled-out over peers, with the
peers themselves selecting those that are beneficial and re-
jecting those which are not. To achieve this, we argue that,
new protocols should be “injected” live into a running P2P
system, with peers themselves replicating them. This re-
quires that peers select “socially beneficial” protocols even
though they need to base this on their own individual per-
formance evaluations. What we are proposing can be seen as
a meta-protocol, which we call Automatic Social Bootstrap-
ping, that intelligently selects and replicates those protocols
that are for the social good — that is, maximize the aver-
age utility of the entire population. We sketch an outline of
the protocol and present some initial high-level simulation
results. Finally we identify several open issues that need to
be addressed in order to further develop the approach.

1. INTRODUCTION
There is a trend towards distributed social software. Of-

ten based on peer-to-peer (P2P) protocols, such systems
harness the social behavior of a community of users: for
example sharing bandwidth or data to achieve individual
user goals, downloading a particular media file or establish-
ing real-time audio contact between peers.

Currently, for social software to “take-off” there needs
to be out-of-band publicity and user interventions. This
means millions of users need to locate, download and up-
date popular P2P clients such as BitTorrent [13], Skype [14]
or eDonkey [15]. But at the machine level, these manual
distribution methods are painfully slow and inefficient, rely-
ing on users to communicate, coordinate and act. Also this
could be holding back the deployment of services that can’t
create their own “buzz” — that don’t stimulate the kind of
publicity necessary for successful massive deployment.

Many currently successful systems appear to have gained
popularity due to the social pressure that they implicitly
produce for users to join. For example, a user of Skype (a
free voice-over-IP service) will naturally request their reg-
ular contacts to install the service so they can make free
telephone calls. Others have discussed how seductive “psy-
chological”, rather than economic benefits, are sometimes
employed [12].

∗This work was partially supported by the EU within the
6th Framework Programme under contract 001907 (DELIS).

In addition to recruiting users to download and maintain
clients, systems need to keep users in check. Incentives are
needed to ensure that individual users continue to contribute
to the social good. For example, if file sharing systems allow
users too much latitude to “leech” — only downloading and
not uploading — then the knock-on effect will be to degrade
the overall performance of the system. Various mechanisms
are employed such as tit-for-tat-like strategies (in BitTor-
rent) or high-levels of code obfuscation in closed protocols
(in Skype).

For these kinds of social software systems, the social boot-
strapping process — getting the protocol running on many
nodes of a network — is still essentially a manual proce-
dure. It is as though we are back to the early days of main-
frames where to get an application running required direct
operator intervention over several stages. In some sense, the
predicament here is worse since it requires many hundreds or
thousands of individual user interventions (often including
reboots of machines). This is highly inefficient and tiresome.

Here we outline some initial ideas towards an approach
where nodes themselves autonomously locate, select, install
and assess protocols to provide services to the application
level without user intervention. This clears the way for rapid
deployment of services without relying on user intervention.
Essentially what we are proposing is a way to automate the
social bootstrapping process.

2. AUTOMATIC SOCIAL BOOTSTRAP-
PING

In the same way that manual operator boot procedures of
the past were replaced with automated sequences (basically
simulating what an operator used to do), so can we auto-
mate the process of social bootstrapping. To dispense with
direct user intervention, however, we need to replace their
informal methods for the location of new packages and their
judgement concerning how to evaluate them. Additionally,
we wish to maintain the social utility of deployed proto-
cols such that, in general, nodes will select protocols that
increase social welfare rather than purely individual needs.

We also require a minimal and general approach that
could be applied over many domains rather than being tied
to implementation or application specifics. Furthermore, we
need to provide a mechanism whereby new protocols can be
easily introduced into the system such that they automati-
cally spread yet exclude the possibility of malicious viruses
utilizing the mechanism.

Since currently these tasks fall on the shoulders of human
users, can we capture them in some algorithmic way? In or-
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Figure 1: Schematic of a single node from the
user down to the ASB overlay. The protocol pack-
age (PP) contains both protocol code (implement-
ing the API that applications use) and the current
view (links to neighbor nodes). Lines indicate bidi-
rectional information flow, arrows indicate directed
flow.

der to do this, we need some simple kind of “theory” of social
behavior which can be easily encoded into a protocol. We
argue that a simple rule based on models developed within
evolutionary game theory [11] can be applied in various ap-
plication contexts giving good results. The essence of the
rule is trivially simple: if some other peer node is doing bet-
ter than me, then I should copy its protocol and peer links.
What is interesting is that from such a simple rule complex
dynamics result which favor the spread of socially beneficial
protocols and resist invasion by socially destructive ones,
even when these may benefit individual node interests. In
previous works, we have demonstrated how variations on
this simple rule can produce protocols that self-organise so-
cially cooperative networks [6, 7, 8]. In these works, how-
ever, protocol variants emerged through randomized muta-
tions producing dynamicity of the networks. Here, as will be
seen, we propose the idea of Automatic Social Bootstrapping
(ASB) for stable networks in which protocols are explicitly
introduced into the network.

2.1 The ASB Service Protocol
We concentrate on distributed systems in which nodes

form a P2P overlay network. We assume nodes maintain
a bounded view into the overlay comprising a set of links
to other nodes. We assume each link is symmetric which
means that the overlay can be represented as an undirected
graph1. In addition, we assume nodes run user applications

1This assumption is carried over from the “tag” mechanism
on which the protocol is based [6]. In on-going work we are

Periodically each node:

i ! this node

j ! SelectRandomNode() // select a random node j

if Uj » Ui then // utility of j higher?

PP.protocoli ! PP.protocolj // copy protocol of j to i add j

PP.viewi ! PP.viewj " j // copy view of j to i add j

Figure 2: The basic ASB service selection proto-
col. Nodes periodically compare their utility with
randomly selected others. If the utility (U) is sig-
nificantly higher, then the protocol package (PP) is
copied, overwriting the existing PP. In addition the
view stored in the source PP is copied and a link to
the source node is added.

which draw on services offered by P2P protocols. Protocols
are implemented as code which maps an API to underlying
requests passed to nodes within the views. Additionally,
protocols may service requests from other nodes within their
view. Such requests may require action at the application
level.

We define a Protocol Package (PP) as an instance of a
protocol plus an associated view. PP’s are selected and
replicated between nodes based on a utility produced by
the application. The utility should be some numerical value
that allows comparison between nodes using the same API.
It should be periodically recalculated by the application to
reflect the current quality of service given by the PP. Fig-
ure 1 shows a schematic diagram of a single node using a
single application which draws on services supported by a
PP.

The ASB service is itself a P2P protocol (a meta-protocol)
that selects and replicates other protocols (by copying the
PP) from the network. The ASB service protocol itself is
not replicated or selected from the network — it is fixed
and would need to be installed in a conventional manner
or be supplied as part of an operating system. The ASB
service protocol applies a utility-based replication approach
as shown in Figure 2. When a PP is replicated, the view is
amended by adding the source peer itself. If this causes a
view to exceed its maximum size, then a randomly selected
old link is removed from the view to make space for the new
link. The ASB assumes a random sampling service over all
peers within the ASB overlay. This is not implemented by
ASB itself. A random sampling service could be provided
using existing distributed P2P methods such as the News-
cast protocol [9].

2.2 Deploying New Protocols with ASB
Given an existing ASB overlay, deployment of a new pro-

tocol follows three stages: (a) seeding; (b) injection; (c)
deployment. Stages (b) and (c) are automated through the
ASB service. Stage (a) requires programmer intervention.
Assuming the ASB service is open (as we do), then anyone
may generate a new protocol that implements the API. Once
produced, the protocol needs to be “seeded” into the ASB
overlay. In order to do this, a minimal ASB overlay which
executes the protocol needs to be run live. This takes the

experimenting with relaxing this assumption.
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Figure 3: The three stages of new protocol deploy-
ment in ASB.

form of an “example” of a functioning protocol.
Once an example seed is live, it can be injected into the

global ASB overlay. This involves wiring a single node from
the example seed to a single node in the global overlay.
Then, automatically, the new protocol will be replicated into
the ASB overlay if nodes within the overlay decide to copy it
based on the utility comparisons. This process occurs with-
out the necessity of user intervention or awareness. Figure 3
illustrates the stages in the deployment process.

In this approach, the large-scale testing of the example
seed is via the ASB overlay itself — if it is functioning prop-
erly it will only select and replicate protocols that are of
social benefit. We envisage this as a final step in testing of
a new protocol: rather than having to engage in large-scale
testing, a developer can simply inject the example seed and
observe. If the protocol is not selected then figure out why,
modify and re-inject. This is akin to a live edit-compile-
debug software development cycle.

3. SIMULATION RESULTS
Using simulations, we tested our ASB approach with a

minimal canonical application. We had nodes periodically
play the single-round, two-player Prisoner’s Dilemma (PD)
game with their neighbors (nodes in their view). Utility
was set to be the average of individual payoffs received from
playing different instances of the game.

We chose this game because it is a stress test for the con-
flict between “social benefit” and “individual rationality”
— in the single-round PD game, there is always an individ-
ual temptation to act in an anti-social way because this will
improve individual performance [2].

3.1 The Prisoner’s Dilemma
In the two-player, single-round Prisoners Dilemma (PD)

game, two players interact by selecting one of two choices:
to “cooperate” (C) or to “defect” (D). For the four possible
outcomes of the game, players receive specified payoffs. Both
players receive a reward payoff (R) and a punishment pay-
off (P ) for mutual cooperation and defection, respectively.
However, when individuals select different moves, different
payoffs of temptation (T ) and sucker (S) are awarded to
the defector and the cooperator, respectively (see Table 1).
Assuming that neither player can know in advance which
move the other will make and wishes to maximize her own
payoff, the dilemma arises through the ranking of payoffs
T > R > P > S and the constraint that 2R > T + S. Al-
though both players would prefer T , because its the highest
payoff, only one can attain it in a single game. No player

wants S because its the lowest payoff. No matter what the
other player does, by selecting D, a player always gets a
higher score than it would have obtained if it had selected
C. D is therefore the dominant strategy hence an ideally
rational player would always choose D.

C D

C R, R S, T
D T, S P, P

Table 1: The Prisoner’s Dilemma payoff matrix.

Therefore, the dilemma is that if both players select a co-
operative (C) move, they are jointly better off (receiving R
each) than if they both select D; but selfish players will se-
lect mutual defection, receiving only P each, because of the
individual incentive to select defection. We select this game
as a minimal test that captures a range of possible applica-
tion tasks in which nodes need to establish cooperation and
trust with their neighbors but without central authority or
external mechanisms that enforce it.

3.2 Simulation Details
Application level behavior involves each node playing the

PD with randomly selected neighbor nodes. We implement
an API with a single method PlayPD() which “plays” a
single round of PD with a randomly chosen neighbor and
returns the resulting payoff to be used for the utility.

We evaluated the ASB service by testing it with two sim-
ple PP protocol variants: 1) the D-protocol which always
plays D; 2) the C-protocol which always plays C. We initial-
ized the simulated ASB network with all nodes opting for
the D-protocol with random views (a random graph). Each
node had a maximum view size of 20 neighbor links. We set
the PD payoffs 2 to T = 2, R = 1, P = 0, S = −1. For
utility comparisons, we used a difference threshold of 0.5 to
be considered significant. In other words, the ASB service
copies the PP from another node if its utility is at least 0.5
greater.

For simulation purposes, nodes were selected to play the
PD game randomly from the population. If selected, a node
makes one PlayPD() call. This causes a random neighbor
to be selected and a single round of PD to be played between
the pair. The PD move selected by each node (C or D) is
dictated by the protocol the node currently holds within
its PP. Payoff values are then returned by PlayPD() to
the application as dictated by the PD payoff matrix (see
Table 1). The running average of these payoffs is stored by
the application as the utility.

In each cycle, 10N nodes were selected to play the PD,
where N is the total population size. This means that on
the average, each node initiated 10 PD games per cycle. At
the end of each cycle, after all the games had been played,
N/2 nodes were selected, in-turn, randomly from the popu-
lation to execute the ASB protocol. When a node executed
the ASB protocol, it selected a random node from the pop-
ulation, compared utilities and possibly replicated a PP as
previously discussed (see Figure 2). After N/2 nodes had
executed the ASB protocol, the next cycle commenced and

2Strictly T should be less than 2 to satisfy the PD con-
straints. We obtained similar results with T slightly less
than 2.
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Figure 4: A typical simulation run for a 2000-node
network. All nodes are initialized to the D-protocol
and linked as a random graph topology. The χ
curve shows the number of nodes executing the C-
protocol. The ρ curve shows the number of PP repli-
cations performed by the ASB service at each cycle.
At cycle 10, an “example seed” of the C-protocol
is injected into the population. The ASB service
quickly replicates the protocol through the entire
network.

PD games were played again. This process was repeated
until some maximum cycle was reached.

Although our simulation separates game playing and repli-
cation into two distinct phases (which aids analysis), the
randomized ordering of the node selections allows us to be
confident that this separation does not introduce artifacts
that would not be present in a system where these actions
were interleaved asynchronously.

3.3 Typical Runs
Here we give three typical runs for populations of 2000

nodes. We began each simulation with all nodes containing
a PP storing the D-protocol and links to randomly selected
nodes (a random graph). In each case, the population was
static with all nodes executing the D-protocol. This means
that the average node utility is P .

Then an “example seed” of the C-protocol was created by
selecting two nodes from the population, setting their pro-
tocol to the C-protocol, removing all of their existing links
and creating a single link between them. This “example
seed” was then “injected” into the population, at cycle 10,
by making a link between one of the example nodes and a
randomly selected node from the population.

As can be seen from Figure 4, very quickly (after cycle 10),
the C-protocol spread quickly throughout the population
leading to a stable population in which all nodes stored the
C-protocol. This increases the overall utility by increasing
the average node utility from P to almost R. This means
that the socially beneficial protocol was selected by the ASB
service.

We checked the robustness of the C-protocol popula-
tions by injecting various proportions of D-protocol exam-
ple nodes back into the population after the C-protocol had
dominated and stabilized in the population. We found that
in our 2000 node population we needed to set 50% of the
population to the D-protocol in order to cause the popula-
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Figure 5: A simulation run with the same initial
conditions as those of Figure 4. To test robustness,
10% of the nodes are set to the D-protocol at cycle
100. After an initial spreading of the D-protocol, the
system rapidly recovers to a full C-procotol popula-
tion.
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Figure 6: A simulation run with the same initial
conditions as those of Figure 4. When 50% of the
nodes are set to the D-protocol at cycle 100, the sys-
tem degrades back to a population of D-protocols,
never to recover again. Hence, under these extreme
conditions, the ASB service fails.

tion to fallback into the less socially beneficial situation in
which the D-protocol establishes itself on all nodes in the
population. Figure 5 shows the population recovering from
the injection of 10% D-protocol nodes at cycle 100. Figure
6 shows the population falling back to the D-protocol after
50% D-protocol nodes were injected at cycle 100.

3.4 Interpretation of Results
These very initial results do not prove our method in gen-

eral. They show that for a very simple scenario, in which we
employ a canonical test case (the PD), the ASB approach
appears to operate in a desirable manner. It is a kind of “so-
cial ratchet” selecting the socially beneficial C-protocol from
a single example yet resisting the socially less beneficial D-
protocol even when large proportions of nodes are set to it.
We found that the system finally failed when more than 50%
of nodes were simultaneously set to the D-protocol. How-
ever, it is important to realize that only a single two-node
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example of the C-protocol seed would be sufficient to flip
the system back into the socially beneficial C-protocol.

Further experiments (not shown here) indicate that these
results are scalable and robust to node failures but more
experimentation needs to be done to fully verify this. Also,
although it appears that similar results are obtained with
different PD payoffs, we also find that certain payoff values
cause the ASB to fail. Again on-going work is looking into
this.

Why does ASB select the socially beneficial C-protocol
when individual nodes would seem to do better with the
D-protocol? We have dicussed this counter intuitive result
elsewhere at length [6, 7]. It involves a topology-based pro-
cess in which the overlay isolates D-protocol nodes so they
end-up only connected to other D-protocol nodes. At that
point, D-protocol nodes can gain higher utility by copying
C-protocol nodes. We do not discuss this here in detail.

4. CONCLUSIONS
We have proposed the notion of automatic social boot-

strapping (ASB) and the problems it might address in dis-
tributed peer-to-peer systems. ASB is essentially a meta-
protocol that selects other protocols that are socially ben-
eficial — good for the network as a whole. ASB is both
open and completely distributed, requiring no central au-
thorities, information storage or control, yet aims to attain
a socially beneficial outcome even in the presence of egotisti-
cal peers who only care about their own utility. We outlined
a sketch of how such a system might operate and presented
some high-level initial simulation results applied to a simple
scenario using the canonical Prisoner’s Dilemma game.

The ideas we have presented are currently at an early
stage and raise many questions that need to be addressed.
For example, it is currently unclear exactly how a utility
can be meaningfully defined and compared between nodes,
especially if they are different applications or application
usages. Also, major security questions arise when allowing
for automatic code replication and execution. For example,
how can any ASB type protocol be certain to only select
non-malicious protocols? Furthermore the proposed proto-
col would appear vulnerable to sybil attacks [4] and possibly
whitewashing attacks where nodes change identity regularly.
However, an increasing number of solutions are being pro-
posed to address these problems [5]. In addition, recent ex-
periments with a protocol similar to ASB produced results
that indicate some robustness to possible attacks [1].

Can the results from the simple example of the PD scale to
more realistic P2P protocols? This is an open issue. So far
we have shown how similar protocols to ASB can be applied
to file sharing [6] and job sharing relying on specialization
[8]. But we currently have no general predictive theory for
what kinds of tasks can and can not be tackled in this way
so we have relied on incremental simulation models.

Dynamic protocol platforms have been developed that al-
low for rapid run-time protocol adaptation without disturb-
ing running applications [10]. These kinds of platforms could
provide the essential packet-level infrastructure on which
meta-protocols such as ASB would execute.

A substantial amount of research effort is required even
to assess the feasibility of an ASB approach but we believe
it is not an unreasonable direction for further work.

Acknowledgements
We would like to thank Mark Jelasity, Simon Patarin, Sefano
Arteconi, Giovanni Rossi, Andrea Marcozzi and Edoardo
Mollona, all from the Department of Computer Science at
the University of Bologna, for many discussions relating to
aspects that influenced the paper.

5. REFERENCES
[1] Arteconi, S. and Hales, D. Greedy Cheating Liars and

the Fools Who Believe Them. University of Bologna,
Dept. of Computer Science, Technical Report
UBLCS-2005-21, (available at:
http://www.cs.unibo.it/pub/TR/UBLCS/2005/).
2005.

[2] Axelrod, R. The Evolution of Cooperation. Basic
Books, New York. 1984.

[3] Cohen, B. Incentives Build Robustness in BitTorrent.
Presented at the 1st Workshop on the Economics of
Peer-2-Peer Systems, June 5-6, Berkley, CA, (available
at: http://www.sims.berkeley.edu/
research/conferences/p2pecon/) 2003.

[4] Douceur, J. The sybil attack. Proc. of the IPTPS02
Workshop, Cambridge, MA (USA), March 2002,
(available at:
citeseer.ist.psu.edu/douceur02sybil.html), 2002.

[5] Feldman, M. et al. Robust Incentive Techniques for
Peer-to-Peer Networks. Proc. 5th ACM Conf.
Electronic Commerce (EC 04), ACM Press, pp.
102-111. 2004.

[6] Hales, D. and Edmonds, B. Applying a
socially-inspired technique (tags) to improve
cooperation in P2P Networks. IEEE Transactions in
Systems, Man and Cybernetics - Part A: Systems and
Humans, 35(3):385-395, 2005.

[7] Hales, D. and Arteconi, S. SLACER: A
Self-Organizing Protocol for Coordination in P2P
Networks. IEEE Intelligent Systems, 21(2):29-35,
March / April 2006.

[8] Hales, D. Choose Your Tribe! - Evolution at the Next
Level in a Peer-to-Peer Network. In Engineering
Self-Organising Systems. Proc. of the 3rd Workshop
on Engineering Self-Organising Applications, LNCS
3910, Springer. 2006.

[9] Jelasity, M., Montresor, A., and Babaoglu, O.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(1):219-252 2005.

[10] Patarin, S. and Makpangou, M. Pandora: an efficient
platform for the construction of autonomic
applications. In Self-Star Properties in Complex
Information Systems, LNCS 3460, Springer.

[11] Riolo, R. L., Cohen, M. D. and Axelrod, R. Evolution
of cooperation without reciprocity. Nature 414,
441-443 2001.

[12] Strahilevitz, L. Charismatic Code, Social Norms, and
the Emergence of Cooperation on the File-Swapping
Networks. Virginia Law Review, Vol. 89, (available at:
http://ssrn.com/abstract=329700), 2003.

[13] BitTorrent Webpage: http://www.bittorrent.com
[14] Skype Webpage: http://www.skype.com
[15] Edonkey Webpage: http://www.edonkey.com

60


