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Abstract—The explosion of freely available media content
through BitTorrent file sharing networks over the Internet means
that users need guides or recommendations to find the right,
high quality, content. Current systems rely on centralized servers
to aggregate, rate and moderate metadata for this purpose.
We present the design and simulations, using real BitTorrent
traces, for a method combining fully decentralized metadata
dissemination, vote sampling and ranking for deployment in
the Tribler.org BitTorrent media client. Our design provides
robustness to spam attacks, where metadata does not reflect the
content it is attached to, by controlling metadata spreading and
by vote sampling based on a collusion proof experience function.
Our design is light-weight, fully decentralized and offers good
performance and robustness under realistic conditions.

I. INTRODUCTION

The BitTorrent protocol has transformed the distribution of
large media files due to it’s decentralized, scalable, efficient
and robust peer-to-peer (P2P) architecture [1]. Peers share
bandwidth to help distribute files of common interest. How-
ever, the protocol excludes mechanisms for searching, rating,
and associating descriptive metadata to, content.

Consequently, to locate high quality content available for
download, users often rely on web-based systems that provide
both links to content (.torrent files) and associated metadata
such as a text description, a thumbnail graphic, a URL to
associated information on the web and other useful informa-
tion. This allows users to search and browse available content
before making a selection of what to download.

Web-based systems rely on user contributions of both
.torrent files, that point to available content, and metadata
that describes content. They are administered centrally so
malicious content or incorrect metadata can be manually
removed and the users who posted them excluded. Creating
new identities in such systems involves some level of user cost
since identities must be created on the web system prior to
posting information. Hence such systems cannot entirely stop
anti-social behavior but they make it costly because creating
new user identities involves some time and effort.

A number of BitTorrent clients have, recently, integrated
their own search and metadata systems such that users can lo-
cate and browse available content conveniently from within the
client before downloading (e.g. Vuze1 and Miro2). However,

1http://vuze.com
2http://www.getmiro.com/

again, these rely on centrally administered servers to store and
and serve metadata requiring the creation of user accounts.

In this paper we propose a design for a fully distributed
metadata dissemination and rating system which provides sim-
ilar functionality to centralized systems. Low quality metadata
such as spam or incorrect information is combated through a
distributed ranking system based on the sampling of user votes.

Our approach is a major step towards a completely de-
centralised, and self-maintaining, BitTorrent media sharing
community3.

As with centralized systems we do not eliminate the possi-
bility of anti-social behavior but we make it costly and difficult
without the need for central servers or administration.

The target platform for our design is the Tribler4 media
client [13] but the design is generic enough that it should be
applicable in other media sharing contexts where decentralized
and robust metadata dissemination and rating are required.
Tribler implements a non-spoofable distributed peer identity
system using a public key infrastructure. This means that
all communication between nodes is signed and bound to
a known source identity, thus preventing forged or stolen
identities. Also, the Tribler client provides local database
services allowing state to be maintained over sessions.

The paper is structured as follows. In section II we give
an overview of the system. In section III we briefly discuss
the peer sampling service (PSS) - which provides an essential
service required by our design. In section IV we describe our
metadata dissemination mechanism. In section V we present
our vote sampling approach and in section VI we present sim-
ulation results based on real BitTorrent peer traces. In section
VII we discuss some vulnerabilities and possible refinements
of our design. In section VIII we present a summary of related
work. Finally we conclude with a summary of our contribution
and possible future work.

II. DESIGN

In this section we describe, in outline, the overall design of
our system giving the reasons for our main choices.

We require a method by which nodes in a P2P file shar-
ing system can submit, distribute and rank metadata while

3Which would also require the use of a decentralised tracker. This is an
active area of research and there are also deployed versions in use but this is
beyond the scope of this paper.

4http://tribler.org
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respecting the constraints of: Full decentralisation requiring
no servers or centralised components; Scalability to millions
of nodes; Resistance to malicious attacks which attempt to
display spam metadata to the user.

In order to propagate and store metadata we selected a
gossip (or epidemic) based replication approach. Each peer
stores metadata in its own local database. By storing metadata
locally we ensure that it has high availability. Periodically
peers are paired randomly and exchange metadata updating
their own local databases (section III discusses the PSS
mechanism used). We selected a gossip based design because
it requires no central components and is robust to high churn
rates [3]. We could have stored metadata in a Distributed
Hash Table but these require explicit leave and join operations
which are costly in systems with high churn, such as file
sharing networks [14]. Additionally, search performance is
considerably enhanced if metadata is stored locally because
it is not necessary to perform multi-hop look-ups. It could
be argued that such a system is not scalable. However, as
we discuss in Section IV, the recency and random policy of
metadata dissemination should ensure that most peers discover
most of the files in the system.

We require that users can “vote” on metadata indicating if
they consider it to be of high quality (a positive vote) or spam
(a negative vote) and that these votes can be communicated to
other nodes such that they can be used for ranking items after
a user search. Here we made two design decisions influenced
by security and efficiency concerns.

Firstly we decided to bind votes not to metadata items
(which we term “moderations”) but to the users who created
them (which we term “moderators”). Our thinking here is that
moderators will either tend to be good or bad - i.e. to create
quality moderations or spam moderations. Also this makes
more efficient use of user input, since it is known that users
rarely vote or moderate items in file sharing networks5. We
cannot expect each moderation to obtain sufficient votes to
rank them. However, given a small number of active modera-
tors and a large number of moderations, the few votes made
by users, when bound to moderators, can produce sufficient
quantity for meaningful ranking.

Secondly we decided, for security reasons, to only count
votes from nodes encountered directly via the PSS. Hence we
sample the population randomly rather than aggregating votes
using gossip based aggregation methods [8]. This ensures
that each node can only vote once for any moderator (a
one node one vote per moderator policy). The downside of
this decision is that each node requires sufficient time to
obtain a good sample and also that different nodes will have
different samples at any given time. Hence we trade speed and
efficiency for security.

In order to frustrate spam moderators we utilize a distributed
mechanism based on an experience function which imposes a
cost on new identities before their votes are accepted by other

5Based on data from YouTube and a popular Bittorrent public tracker
community, mininova.org, we found typically no more than five user votes
per 1000 views or downloads

nodes. However, this cost would be incurred anyway by a
normal functioning node in a file sharing network (uploading
files to others). Hence we do not impose an artificial cost that
would degrade the efficiency of the system. The experience
function is presented in section V-B. Here we trade some extra
protocol complexity for security against spam attacks where
many cheap identities are used to vote up a spam moderation.

III. PEER SAMPLING SERVICE

We assume each peer has access to a peer sampling service
(PSS) which periodically returns a random peer from the entire
population of online peers. This allows nodes to discover
others and potentially exchange messages with them.

There are several ways to implement a PSS in a distributed
and robust way. One approach uses gossiping or epidemic
protocols. Such approaches maintain a random-like overlay
network in which nodes regularly exchange their neighbor lists
(or view) with others. Such PSS protocols have been shown to
be robust, self-repairing, completely decentralized and scalable
to tens of millions of nodes [9].

Our target system, the already deployed Tribler system,
implements a variant of Newscast [7] called BuddyCast [13].

IV. METADATA DISSEMINATION

In this section, we will describe how metadata is dissem-
inated in our system. The low level details of the metadata
dissemination protocol, called ModerationCast, and extensive
simulations, are given in [6]. Here we present the main features
relevant to the voting mechanisms described later.

Moderations are disseminated in a gossip-like fashion to
other peers by using the PSS. However, nodes only pass
on metadata from those moderators they have approved.
Approval involves the user explicitly selecting a thumbs-up
icon displayed next to the metadata from the given moderator
indicating a positive (+) vote for the moderator. Users may
also disapprove of a moderator by selecting a thumbs-down
indicating a negative (-) vote.

Over time as nodes encounter others, through the PSS,
they will receive new moderations either directly from the
moderator, if they encounter them, or from those nodes which
have approved the moderator. Received moderations are stored
in a local database. Hence highly approved moderators will
tend to spread their metadata more quickly than moderators
that are not highly approved. If no other node approves a
moderator then the only way that its metadata can spread is
through direct contact with other nodes. Nodes that disapprove
a moderator remove all associated moderations from their local
database and refuse any new moderations from that moderator.

Essentially then, the idea is that, “good” moderators, as
judged by the approval of others, will spread their metadata
quickly but “bad” moderators, obtaining low numbers of
approvals and / or disapprovals, will only be able to spread
their metadata slowly. However, it is important to note that
even bad moderators can spread their data to others through
direct interactions with nodes that have not already indicated
disapproval. Figure 2 shows a schematic diagram showing how
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do forever
   wait !

   j " GetRandomNode()

   mli " Extract(local_db)

   Send mli to j
   mlj " Receive(j)

   local_db " Merge(local_db, mlj)

(a) active thread

do forever
   mli " receive(*)

   mlj " Extract(local_db)

   Send mlj to i
   local_db " Merge(local_db, mli)

(b) passive thread

Fig. 1. The push / pull gossip based metadata dissemination protocol.
GetRandomNode is supplied by the PSS. The local db stores received
moderations. The Extract() function returns the moderations list (ml) sent to
other nodes. The Merge() function inserts new moderations into the local db.
These operations take account of local node votes and moderation recency
criteria.

metadata

creator

m+

-

+

+

-

positive vote

negative vote

Fig. 2. Diagram illustrating how moderations spread from a moderator node
that creates the metadata (m) and nodes that give the moderator positive votes
(+). Shaded nodes have received and stored the metadata in their local db.
Nodes that give negative votes (-) or no votes (null) do not pass on the
medadata.

a moderation spreads in the population based on approvals and
disapprovals by other nodes.

To authenticate moderations we use digital signatures. This
prevents alteration of moderations by malicious peers. Figure
1 shows outline pseudocode for the gossip based metadata
dissemination protocol.

V. VOTE SAMPLING

In this section we describe how votes are sampled and
collected by peers in the network. We designed two related
protocols: BallotBox and VoxPopuli and an associated expe-
rience function.

These protocols support a two-tier identity system because
the population is partitioned into an experienced core and an
inexperienced periphery. Figure 4 illustrates this view of the
system schematically.

Figure 3 shows outline pseudocode for the two protocols.
We describe each in turn below.

A. BallotBox protocol

As previously stated votes are generated by users registering
approval (a positive vote) or disapproval (a negative vote)
against moderators. Each peer node stores a list of the votes
the local user has made in a structure we term the local vote
list. Each entry in the local vote list contains a pair mapping
a unique moderator ID to a vote (either positive or negative)
plus a time stamp indicating when the user made the vote.
Moderators may only appear once in the list since a user is

only allowed to make one vote against each unique moderator.
The length of the list therefore indicates the total number of
votes cast by the local user. It is a record of their local voting
pattern. It can be thought of as a ballot paper that the users
fill in as they make votes.

Periodically each node i selects another node j from the
population randomly (using the PSS). Each node then applies
an experience function E to the other to determine if to request
the local vote list of the other (section V-B below discusses
the E function in detail). Requested nodes communicate their
local vote list to the other. Nodes send a maximum of 50 votes,
selecting them based on a recency and random policy. Exper-
iments demonstrated that combining these policies produced
acceptable performance [6]. Nodes then merge received vote
lists into a structure we term the local ballot box. The local
ballot box is a list in which each entry contains four items:
mapping a unique moderator ID to a vote, a time stamp and a
unique peer ID. The local ballot box is similar in format to the
local vote list except that moderators may appear several times
in the list, recording votes for the same moderator received
from different peers. Also the time stamp records when the
vote was received, by the local node, rather than made by the
remote node.

Essentially then, each peer individually conducts its own
poll by asking other randomly selected peers directly to supply
their local vote list. Hence pairs of peers meet randomly and
exchange votes, building, over time, a sample of the votes of
the population in their local ballot boxes.

Nodes do not forward or share the accumulated information
in their local ballot box with other peers. This precludes certain
kinds of malicious vote manipulation where a node could lie
about the votes received from others. But this means that each
peer can only accumulate a sample of the population votes,
based on its direct experience, not a globally accurate total
count. Faster and more accurate epidemic-style aggregation
protocols have been proposed but they are highly vulnerable
to lying behaviour [8].

The local ballot box has a maximum size of Bmax votes
from unique peers - beyond which new votes replace the oldest
votes. Hence BallotBox determines voting statistics from a
maximum sample of Bmax other peers. Assuming the PSS
produces random samples and Bmax is large enough then
we can expect the local cache to converge to a reasonable
accuracy.

The BallotBox protocol, therefore, is similar to an “opinion
poll” as carried out by polling organisations when attempting
to determine the opinion of an entire population on some
matter of interest. In general such polls ask individuals directly
their own opinion but not what they believe others opinions
are. The BallotBox turns every peer into a pollster enquiring
on moderators.

Based on the current contents of the local ballot box a
peer can calculate a ranking of moderators. This, in turn, can
be used to rank metadata items to which the moderators are
bound. In order to take the raw votes from the local ballot
box and produce a ranking of moderators any suitable method
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do forever
   wait !

   j " GetRandomNode()

   Send vote_listi to j
   vote_listj " Receive(j)

   if Ei(j) = true
      ballot_box " Merge(ballot_box, vote_listj)

   end if

   if num_unique_users(ballot_box) < Bmin

      Send VP_request to j
      topKj " Receive(j)

      topK_cache " Merge(topK_cache, topKj)

     end if

(a) BallotBox and VoxPopli active thread

do forever
   vote_listi " receive(*)

   Send vote_listj to i

   if Ej(i) = true
      ballot_box " Merge(ballot_box, vote_listi)

(b) BallotBox passive thread

do forever
   VP_requesti " receive(*)

   if num_unique_users(ballot_box) # Bmin

      topKj " Rank(ballot_box)

      Send topKj to i

   else

      Send null to j

   end if

(c) VoxPopuli passive thread

Fig. 3. The BallotBox and Voxpuli protocols comprise one active (a) and
two passive threads (b and c). Notice the active thread always executes the
BallotBox protocol but only conditionally executes the VoxPopuli protocol -
when the number of unique votes in the ballot box is below some threshold
Bmin. The passive thread (c) only responds with a top-K list when that node
j is itself not executing VoxPopuli. This prevents nodes unwittingly passing
potentially malicious top-K lists received from others.

could be applied such as simple summation or more complex
proportional approaches. We do not discuss this further here.

Another possible use for the vote sample information is
to display a screen listing the top-K moderators themselves
along with their estimated percentage of the popular vote
and other associated information. We believe such a screen
could psychologically incentivise moderators to produce good
moderations since they can see themselves rise in the ranks of
listed moderators as others vote for them.

B. Experience function

Since new identities are cheap in our system, immediate
voting power would enable Sybil [4] and collusive flash crowd
attacks (where a large number of new peers join the system
with the explicit aim of promoting a moderator by voting for
them for nefarious purposes). We therefore enforce that new
nodes joining the system cannot register votes with others until
they are considered “experienced” by the receiving nodes. In
other words, any node should only take a vote from another
node into account when this other node is experienced.

We define the general experience function as a binary
function E that determines whether or not a node is considered
to be experienced. Any candidate E function must be imple-
mentable in a fully distributed way and be robust to attempts
to fake experience (i.e. to immediately and cheaply generate
experienced identities). While the overall design of our voting
system does not assume a particular definition of experience,
in the implementation that we will present in this paper we
consider a node experienced when it has contributed a certain
amount of data to the peer population by sharing files.

In order to determine the contribution of a node in a safe
way we use the BarterCast protocol [11], which is deployed
in the Tribler system. In essence, by using BarterCast, any
node in the system can estimate the contribution of any other
node (that it knows via the PSS) based on up- and download
statistics that are exchanged among nodes in a reliable way.
First, nodes record statistics of their own BitTorrent file-
transfers. Second, nodes exchange their own direct statistics

with other peers they encounter. Based on these combined
statistics each peer can build a graph of the network with
directed edges that denote the amount of MBs transferred
from one node to another node. The protocol then applies a
maxflow algorithm to derive peer contributions. The maxflow
approach highly reduces the effect of (collaborations of) nodes
that provide false information in order to fake experience. This
approach and its properties are described in detail in [5] and
[11].

In the remainder of this paper, we assume that node i
can compute a reliable contribution value for a node j. We
denote the contribution of j to i by fi→j . For the purposes of
implementing our experience function E, we apply a simple
threshold value T over the contribution function fj→i. Hence
node i considers node j to be experienced where:

Ei(j) =

{
true iff fj→i ≥ T ;
false otherwise.

In our current design we determined an appropriate T
value via simulations based on real BitTorrent traces (see
section VI). However, as we discuss later, T could be adapted
dynamically to adjust to differing conditions.

C. VoxPopuli protocol
The BallotBox protocol involves nodes constructing a sam-

ple of votes based on direct interaction with individual peers,
who are considered experienced. Therefore, new nodes enter-
ing the system need time to build a reasonably sized sample
before they can extract meaningful statistics. A minimum
sample size of Bmin votes from other peers is required before
any statistics are used. This is to avoid artefacts produced by
extremely low vote samples. During this bootstapping process
nodes use the VoxPopuli protocol - a less accurate but speedier
protocol which dispenses with the need for individual vote
counting or the application of an experience function.

When executing the VoxPopuli, nodes request from others
(encountered via the PSS) a rank list of the top-K moderators.
No experience function is applied. Only those nodes which are
not themselves executing VoxPopuli respond based on their
current local ballot box statistics - by producing a ranked list
of moderators truncated to a maximum size of K and sending
this to the requesting node.

Each node executing VoxPopuli maintains a local cache of
the last Vmax top-K lists received and performs a merge oper-
ation to produce its own top-K list which is used for relevance
ranking. There is no minimum sample size required so after
the first VoxPopuli exchange a node can rank moderators.

Any rank merging method could be used. We apply simple
averaging of the rank of each moderator over all stored top-K
lists. Where a moderator does not appear in a list they are
assumed to have rank K+1 for that list.

VoxPopuli is therefore quick (in the order of a few seconds)
but vulnerable to inexperienced and colluding malicious peers
- if a sufficient number enter the system such that they form a
large enough proportion of the total peer population and they
promote the same spam moderators.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on January 18, 2010 at 11:23 from IEEE Xplore.  Restrictions apply. 



experienced

core

peer

population

new node entering

population

existing node entering

experience core

Fig. 4. Diagram illustrating the concept of a peer population comprising
an experienced core of nodes and new nodes entering the system. Over time
new nodes will enter the experienced core as other nodes recognise them as
experienced.

VI. SIMULATION RESULTS

In order to test our proposed design we performed simula-
tions based on real traces from the private BitTorrent tracker
filelist.org. It is possible to trace the behavior of unique peers
over multiple sessions and multiple swarms with this tracker.
This is not possible with public trackers such as mininova.org.
The traces record the size of the files that are shared in each
swarm, and uptimes, downtimes and the connectability of
peers (i.e. if they are behind a firewall or freely connectable).

The traces capture the realistic high churn rates found in
deployed P2P systems. On average only 50% of the total
population of nodes are online at any given time6. For our
simulations we used a dataset of 10 unique traces of 7 day
duration monitoring 100 unique peers. Each trace records
approximately 23,000 unique events making a total of 23×104

events7.
Our simulations operate at the BitTorrent file piece level.

This means we simulate every action that a BitTorrent client
would need to take, down to the exchange of file chunks, peer
choking and piece selection. The individual actions of each
node correspond to those that any obedient Bittorrent client
would undertake while downloading a file in a swarm. We
simulate nodes that are predisposed to seed files altruistically
after they have downloaded and those which free-ride by
leaving swarms as soon as they have downloaded their file.
Such detailed simulations are non-trival to implement and
require significant computational power to run.

In the following sections we perform simulation experi-
ments that demonstrate: The generation of an experienced core
- section VI-A; The performance of vote sampling protocols
- section VI-B; The performance of the system under spam
attacks by a massive number of colluders who attempt to
promote spam metadata - section VI-C.

6By total population we mean all nodes that enter the system - for however
long - over the seven day period of the traces.

7The datasets used, and associated documentation, are publicly available
at: http://davidhales.com/tom-data.zip.

A. Experience formation
We used trace based simulations to determine how quickly

our system would produce an experienced core for given
threshold values T for the experience function E (as described
in section V-B). In order to gain a general picture of the
formation of experience between nodes we calculated a time
series for a value we term the Collective Experience Value
(CEV). Since E is a binary and non-symetrical function that
can be applied to any pair of ordered nodes we calculated the
average of E applied to all ordered pairs of nodes i, j where
Ei(j) = true contributes a value of 1 and Ei(j) = false
contributes a value of zero, hence:

ei(j) =

{
1 iff Ei(j) = true;
0 otherwise.

CEV =
1
N

∑
i∈N

∑
j 6=i

ei(j)
N − 1

where N is the known total population size8.
The CEV is therefore a form of directed graph density

value in which edges are defined between nodes based on
the experience function E. It characterises the amount of
experience between nodes. Figure 5 shows simulation results
based on a typical trace from the dataset for various threshold
values T . We conducted these series of experiments in order
to ascertain the time required for the generation of a sizeable
experienced core for different T values.

Based on the results shown in figure 5 we selected the lower
value of T = 5 MB for use in the further simulation experi-
ments discussed below. This value was chosen pragmatically.
The results indicate that approximately 20% of ordered node
pairs produce experience within 12 hours. This indicates the
early formation of a core but implies a time and upload cost is
necessary before a node can enter it. This frustrates Sybil or
flash crowd attacks while placing only modest costs on honest
new peers entering the system.

Note, however, that even after seven days (168 hours) some
nodes are still not part of the core. This is due to freeriding
behaviour in which nodes download but upload little9 and the
fact that some nodes are rarely present in the trace - they may
enter and quickly leave the system spending most of the time
offline. As stated previously, analysis of the traces indicated
that churn rates are high with approximately 50% of nodes
offline at any given time. This indicates the traces reflect actual
BitTorrent client file sharing dynamics. It is important to note
that the results in figure 5 show results for all peer nodes that
comprise the total population over the seven day period not
just those who are online at any given time. It therefore gives
a global picture of the traced population rather than online
snapshots.

8The CEV value is therefore a measurement requiring global information
and could not be calculated by individual nodes easily. We use our global
knowledge of the traces to calculate the CEV value for our own experimental
purposes. CEV plays no part in the protocols running in the nodes.

9Analysis of the traces showed that approximately 25% of peers uploaded
little to others.
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Fig. 5. Chart showing the Collective Experience Value (CEV) over time for
a typical trace of BitTorrent activity. The CEV indicates the proportion of all
ordered pairs of nodes (i, j) for which i considers j to be experienced. Hence
when CEV=1 all nodes consider all others to be experienced. Results using
five different threshold (T ) values for the experience function E are shown.

B. Vote sampling

We tested the vote sampling protocols by running simula-
tions in which a small number of moderators spread metadata
and are allocated votes from other nodes when they receive
this metadata. We set the first three nodes (M1, M2 and
M3) entering the system to be moderators and to spread a
moderation related to a .torrent file. We selected 10% of the
population at random to provide a positive vote for M1 and
10% to provide a negative vote for M3. M2 gets no votes.
Hence the correct ordering, based on the popular vote, should
be M1 > M2 > M3.

For the BallotBox we set Bmin = 5 and Bmax = 100. The
VoxPopuli cache size was set to Vmax = 10 and for the top-K
moderator lists K = 3.

The results for a typical run are shown in Figure 6. Notice
that at approximately 12 hours there is a sharp rise. This
is result of the bootstrapping properties of the VoxPopuli
protocol. Recall that VoxPopuli allows nodes which have not
yet received at least Bmin votes to determine an ordering of
moderators by randomly sampling the population requesting
the top-K moderators from others who have received at least
Bmin votes. The steep rise indicates that a number of nodes
have obtained these thresholds and can thus spread the top-
K moderators to others. Hence nodes who have attained the
required BallotBox sample size, since they have received
enough votes from core nodes, share their rankings with new
nodes entering the system - who cannot distinguish core nodes
from other new nodes.

C. Spam attack

A major threat to our system is an attack on new normal
nodes - those which have not yet received at least Bmin votes
from core nodes but act honestly - by a flash crowd of new
nodes promoting a spam moderator. Such a flash crowd could
be comprised of colluding nodes or the result of a Sybil [4]
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Fig. 6. Chart showing the effectiveness of the vote sampling system over
time. The correct ordering is M1 > M2 > M3 based on votes. Voting nodes
do not vote until they receive the appropriate moderations via the moderation
dissemination protocol. Three typical runs are shown for different independent
traces. The average is over 10 independent runs.

attack in which a single node creates and maintains multiple
identities. In either case it is clear that if the size of the spam
crowd is significantly larger than the online experienced core
then the spam attack will be successful against newly entering
normal nodes. However, over time, new nodes will recover
from the attack when they have obtained at least Bmin = 5
votes in their local ballot box. So correctly functioning new
nodes will only be vulnerable to such an attack for some
initial period of time. Figure 7 illustrates this kind of attack
diagrammatically.

Figure 8 gives results from simulations based on the 10
traces. However, here we fixed 30 nodes to be part of the
experienced core. We set the flash crowd size to 30 and 60
in size. As can be seen when the flash crowd is 2 x core size
(60) then most new nodes are defeated (polluted by a spam
moderator - M0) for approximately 24 hours. When the flash
crowed is 1 x core size then only a minority of nodes are
defeated initially.

VII. DISCUSSION

The claim that the experience mechanism can discourage
spam rests on two assumptions: 1) that the experienced core,
over time, will become large and be populated by non-spam
(or non-spam voting) nodes and 2) that spam nodes will not be
able or prepared to pay the upload cost to join the experienced
core.

Our first assumption is based on the idea that a population
only becomes desirable for spamming if it is already large
and that any small population that is already infected by spam
nodes will not become large since users will go elsewhere and
join other more productive communities. Hence we believe it
is not unrealistic to assume that the founders (or elders) of
any successful peer community are unlikely to be malicious.
To put this another way, no successful community can form
if the founders are malicious.
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BallotBox (BB). Notice that the flash crowd cannot influence the experienced
core because core nodes do not not considered new nodes to be experienced.
Over time newly entered normal nodes will eventually become experienced
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  24  48  72  96  120  144  168

P
r
o
p
.
 
o
f
 
d
e
f
e
a
t
e
d
 
n
e
w
 
n
o
d
e
s

Time (hours)

Flash crowd size:Flash crowd size:Flash crowd size:

1 x core size
2 x core size

Fig. 8. Results of a spam attack. The population comprises an experienced
core, a collusive flash crowd plus other newly arrived normal nodes. At the
start of the run the entire core is converged on a top moderator M1. The flash
crowd promote M0 as top moderator (representing a spam moderator). Lines
show the proportion of newly arrived nodes ranking M0 top for different sizes
of the flash crowd relative to the core size. For attack sizes smaller than 1 x
core size, zero pollution is obtain within the first hour. Averages of 10 trace
runs are shown.

Our second assumption relies on the fact that to gain enough
experienced identities to influence the popular vote the spam
nodes would need to pay a high price in time and upload
bandwidth - a price that would be too high to make an attack
worthwhile. The larger the size of the core the higher the cost
of an attack since more spam identities are needed to influence
the vote. As we have demonstrated, even if the number of new
malicious identities are equal in size to the existing core their
voting influence is limited. Here we benefit from scaling - the
larger the core the better the defence against attack.

However, if a sufficiently large set of colluding identities
are willing to pay the cost, then our system can be defeated.

We selected a T value using global information and traces of

past activity. A more robust approach would adapt the T value
endogenously based on experience. One possible approach
involves nodes starting with a threshold T = 0 and adapting it
based on the incoming votes. It is reasonable to suppose that
honest peers would have the same opinion on the reliability
of moderators. We could choose a maximum dispersion level
of opinion in votes, Dmax, above which we increase T . If
incoming votes result in an increase in the dispersion level and
take it above Dmax, the value of T is increased and vice versa.
The basic idea is that nodes respond to what they deem to be
malicious attacks because dispersion in voting may indicate
the presence of malicious peers in the system. By increasing
T , peers would look to shield themselves from the votes of
newcomers and place their trust in more experienced members
of the tribe or community. We aim to explore adaptive T values
in future work.

Another potential flaw in our approach is that it is possible
to fake experience by clever collusion within the BarterCast
protocol but this is difficult and again costly [11]. This is a
variant of the so-called “front peer” or “mole” attack [5]

VIII. RELATED WORK

In the literature, the work that bears greatest resemblance
to ours in its goals is Credence presented by Walsh et al.
[16]. Credence is deployed on top of the Gnutella file sharing
network. No metadata dissemination system is present in Cre-
dence, instead it relies on the underlying pull based mechanism
of the Gnutella protocol for content search. Rather than voting
on moderators, peers vote on files in the system. A peer X
can evaluate another peer Y’s votes based on the correlation
in the voting histories of the two peers. Further, apart from
simple pairwise matching, peers can leverage the correlations
discovered by other peers and compute their own correlations
with distant peers by executing a flow-based algorithm. Using
this approach, users who don’t vote, or do so only minimally,
have no way of distinguishing between honest and malicious
voters. This is evident from the results presented in [16]
where nearly fifty percent of clients are isolated and have no
correlations with other peers. In contrast our system doesn’t
rely on a large number of people voting, yet still works for
all peers, regardless of their voting habits.

System models, analysis, and performance evaluation of un-
structured self-managing rating systems (UMR) and structured
supervising rating (SSR) systems are presented by Tian et al.
[15]. UMR is implemented in unstructured networks where
every peer stores its rating of other peers on its superpeer.
While, in SSR, each peer has a supervisor peer which is
responsible for storing other peers’ rating of that particular
peer. Each supervisor node is located using a DHT [14] based
algorithm.

Our approach of data dissemination and storage is based on
a push-pull gossip approach which differs from both these
approaches. Furthermore, like most work on ratings, their
approach assumes that all peers will issue ratings after each
transaction with other peers. Additionally, they give a detailed
account of a “personalized credibility sub-system”’ which
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bears some resemblance to our experience function. Each peer,
i, maintains a personalized credibility set that contains the
peers who vote honestly on i. However, unlike our system,
ratings from outside the credibility set are also accepted albeit
with lower weights. This approach also differs from ours in
how it deals with new peers. While we bootstrap the new peers
with randomly sampled top-K ratings (see section V-C), [15]
presents no method for bootstrapping new peers.

Kamvar et al. present EigenTrust [10] that uses an algorithm
which is similar to the PageRank algorithm by Google [12]. It
provides globally consistent trust values for peers in a network
using DHT techniques. However, it assumes a stable network
of peers thus making it unsuitable to networks with high churn.
Damiani et al. present a system in which peers ask for ratings
on particular peers by broadcasting poll messages [2]. This is
basically a UMR system. Xiong et al. present the PeerTrust
system [17], in which ratings on a peer are maintained by its
supervising peer. This makes it an SSR system in the termi-
nology of [15]. Such “supervisory” systems, due to high churn
rates and the unreliable nature of real world systems, are often
impractical and not suitable for real world implementation and
deployment in open file sharing systems.

IX. CONCLUSION

We have presented the design and simulations of a metadata
dissemination and ranking system applicable to the deployed
Tribler P2P media client. Three protocols were introduced:
ModerationCast, BallotBox and VoxPopuli. They work to-
gether to spread and rate matadata robustly.

We aimed to produce a light-weight, self-organising and
robust design that is realistic enough to be deployed and re-
quires zero server support. Our work is a major stepping stone
towards a fully distributed and self-maintaining BitTorrent
community that doesn’t require the use of central moderators
and servers.

We have built on existing deployed protocols BuddyCast
and BarterCast to provide a peer sampling service (PSS) and
a robust experience function.

However, we consider our design to be generic enough that
other PSS protocols and experience functions could be used.
Specifically any distributed trust metric that can rate nodes
in a robust way could be adapted as basis for an experience
function and hence can be used to support a robust distributed
vote sampling model.

We have discussed the vulnerabilities in our approach and
indicated why we consider these to be tolerable in realistic
environments. We also indicated some future lines of research
that may address some open issues. We aim to work on the
adaptive threshold T , in order to make our design more robust
against attacks.

To our knowledge Tribler is currently the only deployed P2P
file sharing system using a fully distributed PSS to augment
the BitTorrent protocol to provide proactive media discovery
and seeding incentives [11]. To this we add a fully distributed
metadata dissemination and rating system.

As of writing, we have integrated our code into the Tribler
codebase. In the next major release of Tribler, we shall be able
to test our proposed mechanism in a real deployed environment
and obtain measurements directly from the live system.
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