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Abstract—BitTorrent is a highly popular peer-to-peer file-
sharing protocol. Much BitTorrent activity takes place within
private virtual communities called “Private Trackers” - a server
that allows only community members to share files. Many private
trackers implement “ratio enforcement” where the tracker mon-
itors the upload and download behaviour of peers. If a peer
downloads substantially more than it uploads then service is
terminated. Tracker policies related to credit effect the perfor-
mance of the community as a whole. We identify the possibility
of a “credit squeeze” in which performance is reduced due to
lack of credit for some peers. We consider statistics from a
popular private tracker and results from a simple model (called
“BitCrunch”).

I. INTRODUCTION

BitTorrent (BT) is a highly successful peer-to-peer (P2P) file

sharing protocol [4]. Originally BT was envisaged as an open

protocol in which any peer could participate to cooperatively

download files. To share a file a user needs to create a small

.torrent file which uniquely identifies the file and binds it to

a BT Tracker - a centralised server that keeps track of all the

peers interested in a particular file. The .torrent file can then be

distributed by any means, such as placing it on a webserver or

e-mailing to a list. A user interested in the file can download

the .torrent and activate their BT client software. The BT client

will contact the tracker and connect to other peers interested

in the file. The peers then cooperate to download the file

by sharing pieces between them. A set of peers sharing a

particular file is termed a “swarm”.

A key feature of the BT protocol is the use of a ”Tit-

For-Tat” (TFT) strategy to control freeriding [2]. Put crudely,

the idea of TFT is to incentivise peers to upload as well as

download within a single swarm. Essentially, BT clients will

stop uploading (sharing content) with those others who do not

reciprocate.

However, although TFT provides incentives for those down-

loading from a given swarm to upload (to get more download)

it does not provide incentives for two crucial activities: 1) for

a peer to continue to share the file after it has downloaded the

entire file - this is termed “seeding”; 2) for a peer to share

a file in the first instance. In addition if a peer uploads more

than it downloads in a swarm it cannot carry over any “credit”

to a new swarm.

Recently, there has been a growth of “private tracker”

based methods that attempt to provide incentives for these

key functions by maintaining centralized accounts, that record

upload / download behaviour of peers and apportion “credit”

scores, and shutting out users who do not provide reasonable

ratio to the system over some time period. We describe this

approach in section II.

We examine statistics from a popular private tracker used

to share TV shows in section III1. It is evident that such

approaches do appear to incentivise seeding since we find

that there are a huge number of seeders within the system.

However, we find that a small minority of peers obtain a

large amount of credit in the system. Similar results have also

been obtained for another private BT community [1]. Such

peers, who hog the majority of the credits in the system,

have been defined as “hoarders” in the literature [8]. Hoarders

have a negative impact on the system because their presence

effectively means that there is less credit in circulation leading

to a credit squeeze. As a result other peers suffer, unable

to obtain desired services due to being short on credit. This

creates a credit squeeze. We define a credit squeeze as a
situation in which, due to lack of credit, the efficiency of the
system is significantly reduced.

Using a simplified simulation model we show that even

when all major factors are equal, a skewed distribution of

credit in the system emerges and leads to a credit squeeze

reducing system efficiency. Interestingly, we show that adding
capacity to the system can, counter-intuitively, reduce perfor-
mance due to shortage of credit. We also examine a simple

method used by the measured private tracker that ameliorates

the credit squeeze in our model. The BitCrunch model descrip-

tion, simulation results and discussion are given in section IV,

V and VI.

This paper reports preliminary results in what we believe

is an under explored research area. Our aim is to open a new

line of work, within BitTorrent studies, which examines the

role and function of macro-economic policies at community

level in order to increase community efficiency.

II. PRIVATE TRACKERS

Private trackers require users to registered before they are

allowed to download .torrent files and participate in swarms.

A major function of private trackers is to implement “ratio

enforcement”. This means the tracker monitors how much

1We prefer to keep details of the tracker anonymous but all data is available
on request of the authors.
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upload and download bandwidth is used by each peer over

time. If a peer downloads more than it uploads (a form of

freeriding) then the download service is terminated. Ratio is

persistent over peer sessions and is stored centrally with the

tracker. This provides a mechanism for peers to build-up a

positive “ratio” or earn credit in the system over many sessions

and swarms. This means that peers who seed content to others

earn credit that they can “cash in” at a future time and / or in

a different swarm.

The tracker acts as an accounting system in which the

balance is constant over time. When peer i uploads to peer j
then i’s account is credited and j’s account is debited by the

amount exchanged (some number of megabytes say). Only

those peers with positive credit may continue to download

from others.

If we assume that the tracker performs ratio enforcement by

terminating any downloading by peers with zero credit then

the total credit in the community will always be a constant

value C but its distribution among peers will change over time

to reflect the actual exchanges that have occurred. Hence a

peer that seeds a very popular file to many others and has

a high physical upload rate would expect to accumulate a

high proportion of the available credit whereas those that have

downloaded much but uploaded little will expect to have small

or zero share of the credit.

Different private trackers run variants of this form of policy.

They may allow negative credit or new artificial credit for new.

Also, as we be seen, some trackers allow new credit to be

created in the system overtime.

III. EVIDENCE OF A CREDIT SQUEEZE?

Given peers with different file preferences and upload /

download rates the result of such a process often leads to a

highly skewed distribution of credit over all peers. In fact we

have found that a small “rich club” of peers appear to hold a

large proportion of credit in a real private tracker community.

A. Statistics from a private tracker

Table I shows 7 days of statistics gathered from a popular

private tracker (over the period 06/02/09 to 12/02/09). This

tracker has a reported daily population of approximately

50,000 peers serving of the order of 10,000 .torrents. Peers

earn credit by seeding and spend it by leeching (downloading).

It is possible for peers to earn credit by uploading while

downloading, through the BitTorrent TFT process, but we

found that there is strong evidence that most swarms are over-

seeded and hence we discount this as a major factor in credit

dynamics the tracker we measured. In over-seeded swarms

downloaders do not have to trade with downloaders but can

download directly from seeders.

The tracker we measured rewards seeding by providing

credit to seeders at the “bonus rate” of 1.5 times upload.

Hence a peer uploading one byte will receive 1.5 credits

while downloading one byte will cost 1 credit. This means

the amount of credit in the system is always increasing.

TABLE I
STATISTICS FROM A POPULAR PRIVATE TRACKER OVER 7 DAYS

Day T Δ Δ0 δ S/L
1 48 24 17 0.23 26
2 40 20 15 0.25 26
3 50 25 12 0.16 25
4 67 33.5 17 0.17 25
5 52 26 19 0.24 25
6 46 23 15 0.21 25
7 87 43.5 17 0.13 25

Ave. 56 28 16 0.19 25

Since we have access to statistics detailing total throughput

estimates and the actual credit of the top 10% of peers (top

5000 by credit) we can calculate an estimate of the amount

of new credit accumulated by the top peers as a proportion of

all new credit created over time.

Statistical data is collected by scraping the web pages of the

tracker. We remove all invalid data due to server failures from

our analysis. Because the amount of invalid data is small, it

does not affect our analysis.

T shows the total throughput of the system. Since we

assume the system is closed, it holds that the total throughput

is equal to both the total upload (U ) and total download (D) in

the system. Δ is the total credit increase in the system per day.

The total credit increase comes solely from the credit bonus
of 0.5 rewarded to uploading. Therefore, Δ = 1

2U .

Δ0 is the increase in total credit of the top 10% of the

population (in Terabytes). δ represents the minimum fraction

of the total credit that goes to this top 10% (We explain how

we arrive at this lower bound in the next section). S/L shows

the ratio of seeding to leeching sessions over the entire set of

swarms served by the tracker. We also calculated the turnover

of the top peers which indicates how many of the top 10% of

peers, by credit, change each day. We found this to be minimal

averaging 0.2% over each day (not shown in the table).

Note we can see that the ratio of seeding to leeching sessions

(S/L) is high. This means that many peers are seeding much

content - presumably to earn credit. Yet the top 10% of peers

take a large proportion of the new credit created in the system

(δ). We conjecture that this level of credit increase in the top

peers is a result of high upload bandwidth and the high S/L is

a result of credit starved peers seeding many swarms. Hence

this evidence is consistent with the notion of a credit squeeze
but not directly indicated by it since we do not know that

adding more credit would improve throughput.

B. Lower bound for top peers

We will now analyze the minimum fraction of Δ that is

obtained by the top 10% of peers. Let Δ0 be the credit increase

of only these peers. Let U0 and D0 be the total number of

Terabytes uploaded and downloaded, respectively, by these

peers. The credit increase of these peers can then be expressed

as:
3
2
U0 − D0 = Δ0 (1)
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Note that it can’t be known how much of this credit increase is

part of the new credit injected into the system and how much

has been taken away from peers outside the top 10%. However,

we will show that a certain minimum fraction of new credit

injected into the system is gathered by the top peers. Since

D0 ≥ 0 it follows that Δ0 ≤ 3
2U0. The new credit generated

or credit bonus received is 1
2U0. The credit bonus is therefore

at least 1
3Δ0. For the fraction γ of the total credit bonus that

is obtained by only the top 10% of peers, it then holds that:

γ =
1
2U0

Δ
≥

1
3Δ0

Δ
(2)

We can trivially derive the upper bound of γ. Since naturally

U0 ≤ U , it holds for the credit bonus that 1
2U0 ≤ 1

2U = Δ.

Therefore, γ ≤ 1. This corresponds to the case where the

peers outside the top 5000 have uploaded nothing whatsoever.

Furthermore, since D0 ≤ D and D = U it holds as well that

D0 ≤ 2Δ.

In our measurements, U = 56 and Δ0 = 16 on average.

Therefore, the top 10% peers obtain on average at least a

fraction of 0.19 of the total credits injected in the system. As

the top 10% of peers are only a small fraction of the total

community, the gap between ‘rich peers’ and ‘poor peers’ is

inevitably growing bigger.

IV. BITCRUNCH MODEL DESCRIPTION

In order to explore the minimal conditions under which

certain credit dynamics occur, we have designed a model

(BitCrunch) containing the essential properties of credit sys-

tems. We stripped away the complexities of real communities,

so that the underlying forces of credit become clear and can

be analysed.

A. Peers

The community is represented by a set of peers (P). Each

peer i has a predefined and fixed upload (upi) and download

(downi) capacity (in units of data per unit of time ).

Here we use a highly simplified user / client model. Peers

are online at all times. At any given time a peer is seeding

some number of swarms (S) and downloading from some

number of other swarms (D). When a peer has finished

downloading a file it moves it from it’s download list to its

seeding list. Peers seed files for some predefined and fixed

amount of time and then remove them from their seeding list.

If the number of currently downloading files is less than

D then the peer selects new swarms to download until D
number of files are being downloaded. If adding a new seed

to the seeding list causes the size to exceed S then the oldest

seeding file is removed from the list. In this way each peer

will always be downloading from D swarms and seeding a

maximum of S swarms.

In our initial experiments we use a minimal form of this

scheme by setting D = S = 1 and the maximum seeding

time set to infinity. This means that each peer is always

downloading in one swarm and seeding in one other swarm.

B. Swarm capacity

The tracker supports a set of swarms (S). Each swarm

contains some number of seeder and leecher2 peers (including

possibly zero). Each seeder holds a copy of the entire file

which the swarm is distributing. Each leecher contains some

proportion of the file. Since every peer is assigned an upload

and download rate we can calculate the total demand (sum of

all leecher download rates) and the total supply (sum of all

seeder upload rates). Hence for a given swarm Si:

supply(Si) =
∑

j∈Si

upj

demand(Si) =
∑

k∈Si

downk

where j is a seeder peer in Si with upj upload capacity and

k is a leecher peer in Si with downk download capacity.

In order to create transactions based on supply and demand

we adopt a highly simplified swarm model. If supply matches

demand then all leeching peers receive their entire download

capacity and all seeders use their entire upload capacity. If

demand exceeds supply (under supply) then all seeders use

their entire upload capacity but each leecher k only receives:

download(k) =
supply(Si)
demand(Si)

∗ downk

Hence if demand was twice supply then each leecher would

only receive half of its download capacity. Conversely if

supply exceeds demand then each leecher receives its entire

download capacity but each seeder j uploads only:

upload(j) =
demand(Si)
supply(Si)

∗ upj

Again this means that if supply was, say, twice the demand

then each seeder would use only half its upload capacity.

As will be seen later our initial simulation experiments

assume all peers have equal upload and download capacities

meaning all peers in the same swarm obtain identical service.

C. Ratio enforcement

All peers begin with an equal amount of credit which for all

peers in the system sums to C. When peers download, their

individual credit score is reduced accordingly. Conversely,

uploaders have their credit score increased. In this way C stays

constant over time but the distribution, over peers, changes

depending on download and upload behaviour.

If a peer runs out of credit it can no longer download and is

excluded from the list of active downloaders in any swarm it

is trying to download from. When a peer enters this state it is

considered “broke” and cannot download again until it earns

credit from its seeding activities in other swarms.

2We use the term leecher and downloader synonymously in this paper.
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V. SIMULATION EXPERIMENTS

To examine the relationship between initial credit, effi-

ciency, and credit dynamics in our model we produced two

sets of simulation runs. In the first set of “baseline” runs

we initialised each peer with equal upload and download

capacities and credit. No new credit was created over time. In

the second set of ”unequal capacity” runs we added capacity to

the system by setting a minority of peers to have higher upload

capacity than the majority and, in addition, we experimented

with creating new credit in the system by awarding a “seeding

bonus”.

The simulation runs proceed in discrete time units (or cy-

cles). One time unit involves each swarm transacting uploads

and downloads based on the supply / demand model previously

described.

A. Baseline runs

We started each run with all peers equally sharing the initial

credit C and having equal upload and download capacities.

All swarms were assigned equal popularity and each file had

the same size. We defined efficiency as how much data was

exchanged in units (throughput) over a fixed time period.

We set all file sizes to 10 units. We set the upload and

download capacities of each peer to 1 unit (per time unit). We

performed runs for three different initial credit values (1, 10

and 100 per peer). We set the number of peers to 500 and

the number of swarms to 100. This ensures sufficient peers to

create meaningful levels of supply and demand in each swarm.

These values give a highly balanced baseline in which

all things are equal for each peer. In the real world of

private trackers such balance would not occur since peers have

different upload / download capacities, availability and user

behaviour. In addition swarms follow non-equal popularity

distributions [1]. We performed these simulations to determine

if credit squeeze phenomena can be observed in our simple

model where key parameters are held equal.

Table II shows results from simulation runs with different

initial credit amounts (peer per) given by C. Each value

represents an average of 10 simulation runs to 2000 cycles

(variance was negligible). T is the total cumulative throughput

at the end of the runs. This is shown as a proportion of the

maximum throughput that could be achieved if no peer is

allowed to become “broke” - i.e. if all peers have infinite

credit. As can be seen T increases as C increases. β gives

the proportion of peers with zero credit (broke peers) at the

end of each cycle averaged over the last 10,000 time units.

G gives the Gini inequality measure3 for peer credit at the

end of each cycle - again averaged over the last half of the

runs. ϕ gives the turnover of the top 10% of peers (by credit)

as a proportion. This is calculated after every 100 time units

and is averaged over the last half of the runs. Hence turnover

(ϕ) gives a measure of the “credit mobility” of peers as a

proportion of change in the top 10% of peers over time.

3The Gini coefficient [0..1] characterises inequality with 1 being the most
unequal (one peer holds all credit) and 0 being complete equality.

TABLE II
RESULTS FROM BASELINE SIMULATION RUNS

C T β G ϕ
1 0.58 0.36 0.87 0.84
10 0.81 0.20 0.77 0.43

100 0.97 0.06 0.59 0.10
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Fig. 1. Typical time series of a single simulation run of the model where
initial credit is set to 100 units per peer with peers having equal capacity.

Given our definition of a credit squeeze it is evident that

when initial credit (C) is low then throughput (T ) is also low.

However, when C = 100 units of credit per peer then T is 94%

of the maximum T achievable. Notice also that peer credit

inequality (G) decreases as C increases but that even when

C = 100 there is still high inequality with a Gini value of

0.6. Turnover (ϕ) also decreases as credit increases. However,

even when C = 100, turn-over is still high implying that the

top 10% of peers by credit could change completely within

1000 time units.

Figure 1 shows a typical time series from a single simulation

run for C=100. Note that, after an initial period, values settle

within stable bounds. Because the proportion of broke peers

(β) is low, due to high initial credit, the total cumulative

throughput (T ) almost reaches the maximum throughput found

when credit was infinite.

B. Unequal upload capacities

In order to examine the credit dynamics when some peers

have differing upload and download capacities we performed

a further set of simulation runs in which 10% of peers were

intialised with upload and download capacities of 10 units.

The other 90% were given a download capacity of 10 units

but an upload capacity of only 1 unit. Here we capture the

notion that only a small number of peers have high upload

capacity whereas all peers have high download capacity. We

kept all other parameters the same as in the baseline runs.

Table III shows the results obtained. As could be expected

we see a high level of credit squeeze for the fixed credit
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TABLE III
RESULTS FROM UNEQUAL UPLOAD CAPACITIES SIMULATION RUNS

C T β G ϕ
1 0.56 0.39 0.90 0.82
10 0.71 0.32 0.93 0.44

100 0.77 0.29 0.94 0.60
100++ 0.97 0.01 0.71 0.00
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Fig. 2. Typical time series of a single simulation run of the model where
initial credit is set to 100 units per peer with peers having unequal capacities.

runs (C=1, 10 and 100). Notice however that for the C =

100++ runs we have a minimal credit squeeze effect. In the

C = 100++ runs we initialised each peer with C = 100

but implemented a “seeding bonus” scheme in which seeders

receive an additional 50% credit bonus on all upload. This

means a seeder uploading 1 unit receives 1.5 units of credit.

Interestingly we found that the throughput value, T , was

actually lower in the fixed credit scenarios4 even though

substantial capacity had been added to the system (in upload

and download).

Figure 2 shows a typical time series from a single simulation

run for C=100. Note that after an initial period values settle

within stable bounds. Notice that the proportion of broke peers

(β ) is much higher than the previous baseline time series and

hence the cumulative throughput (T ) of the system is reduced.

VI. DISCUSSION

From the empirical results in section III we conjectured

evidence of a credit squeeze. Our simulations results show

that even in a trivial model where all peers have the same ca-
pacities and user behaviour, all swarms have equal popularity
and all peers start with equal credits, the performance of the
system may be inhibited by credit shortages. This is because

high levels of credit skew emerge due to the fact that a peer

can only upload a file it has already downloaded.

4By this we mean that even if T is expressed as an absolute value, rather
than as a proportion of maximum capacity, it is lower than in the baseline
runs

We also observe that in such scenarios adding extra capacity
to the system, in the form of upload and download, can actu-
ally reduce the performance. This is highly counter intuitive

and something that should be avoided because it implies lack

of scalability.

Finally, we found that by injecting new credit into the system
in the form of a “seeding bonus” a credit squeeze can be
ameliorated when peer capacities are unbalanced.

The results from our empirical evidence and model must

be qualified because we have excluded credit earned during

TFT behaviour - where downloading peers exchange data with

other downloaders. Based on our private tracker measurements

we have concluded that the majority of exchange is between

seeders and leechers but we cannot be sure of this.

Additionally our assumption that swarms resolve supply and

demand in an equitable way is not the case in BitTorrent

due to limited upload “slots” and the randomised nature of

peer selection over time. Our abstraction is that over time and

swarms this might be comparable to equal shares. But again

we cannot be sure of this.

In our model we observed that our swarms became quickly

skewed, containing many leechers and a small number of

seeders and vice versa. Why does this happen when selection

of swarms is uniformly random? This is because any initially

small imbalance becomes exaggerated through positive feed-

back. A swarm with high leecher / seeder ratio gets slow and

hence tends to “recruit” more leechers. A swarm with a low

ratio will tend to turn new leechers into seeders very quickly,

creating more seeders. But this would not happen in BitTorrent

because of TFT effects (which our model excludes). Although,

coincidentally, the flash-crowd swam life-cycles observed in

real systems could produce similar skews [1].

Since we have not put freeriders into our model we have

not explored the tradeoff between amount of credit in the

system and de-incentivising freeriding. A freerider would take

as much credit from the system as they could without recip-

rocating. This could be a interesting area for future research.

VII. RELATED WORK

BitTorrent is a relatively new area of study. However, despite

its recency, a great amount of work has been done on study-

ing the BitTorrent protocol and communities. Many research

studies have been conducted to determine the robustness,

scalability and performance of BitTorrent-like systems [15],

[14], [9], [11], [10], [7], [6], [3].

It should be noted that these works focus on the single

swarm while we are concerned with the multiple swarm

scenario. Other works which have focused on multiple swarms

address the so-called ‘seeder promotion problem’. The basic

claim across these papers is that while the TFT policy of the

BitTorrent protocol could be considered practical for single

swarms, it doesn’t offer incentives for peers to seed content

after finishing their own downloads [12], [13], [5]. All these

works include a kind of monetary mechanism to incentivize

cooperation among peers.
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A recent work by Andrade et al. [1] examines the supply

and demand for resources in public and private BitTorrent

file sharing communities. Their main contributions include

showing that only a minority contributes the majority of the

resources and that the upload contribution of peers is not

correlated to the time that they invest in seeding content. These

findings lend credence to our hypothesis that a minority of the

users hogs the majority of the credits while a large majority

are unable to earn credit despite seeding content for long

durations.

Credit crunches and crashes have been studied in Scrip

Systems by Kash et al [8]. They show that in a P2P system,

both an overabundance of money supply and its shortage lead

to inefficiency. An overabundance in the money supply leads

to a monetary crash where no one is willing to work and

freeriding is encouraged. On the other hand, a shortage in the

money supply leads to peers going broke and not being able

to afford services in the system. This work is different from

ours in that we place our analysis firmly in the very practical

domain of private BitTorrent communities and bring forth real

life measurements to support our hypothesis.

VIII. CONCLUSION

We have introduced the notion of a “credit squeeze” where

lack of credit impacts the efficiency of private tracker systems.

We presented some initial statistics from a popular private

tracker that are consistent with this idea but are not conclusive.

We defined a simplified model of a private tracker and found

that insufficient initial credit can lead to a credit squeeze

even when all peers have equal capacities, user behaviour,

and all swarms in the system have equal popularity. Through

simulation we showed that in such systems highly skewed

credit distributions emerge between peers but that over time

peers have high mobility of credit rank. This means the credit

rich do not stay rich and poor do not stay poor but at any

given time there are rich and poor.

We also performed simulations where a minority of peers

had much higher upload bandwidth capacity than other peers.

Here we found that the minority became highest in the credit

rank, as to be expected, but the imbalance led to high system

level inefficacy due to a credit squeeze in the lower capacity

peers. Hence adding capacity to the system actually reduced

efficiency because the rich minority, over time, accumulate

the majority of credit in the system. Interestingly, we found

that by applying a policy modeled on that used by the private

tracker, from which we collected statistics, solved the credit

squeeze at the expense of reduced rank mobility (it went to

zero). This policy involved giving seeders a “bonus credit” of

50% of their upload. Essentially this equates to imposing ratio

of at least 2/3 on all peers (i.e. they only need to upload two

thirds of what they download to stay in credit).

The work presented in this paper is at an early stage. We

have a hypothesis that a lack of credit circulation, due to a

minority of peers obtaining the majority of the credits, can

severely degrade the efficiency of private trackers. However,

while we do have evidence from a single private tracker that

the gap between the rich peers and slow peers is widening, we

did not have access to the relevant data that could prove that

this phenomenon also hampers the efficiency of such systems.

However, using a simplified model of a private tracker, we

were able to show through simulation that the disparity of

wealth (credits) among the peers leads to a credit squeeze.

In the model, we exclude many phenomena that could lead

to credit skews such as: injecting of new content; differing

swarm popularity and swarm “life-cycles”; peer availability

and differing user behavior (including freeriding). We believe

all of these factors are highly important in shaping how private

trackers actually perform.

REFERENCES

[1] Andrade, N. and Santos-Neto, E. and Brasileiro, F. and Ripeanu, M.
Resource demand and supply in BitTorrent content-sharing communities.
In Computer Networks, 2008

[2] Axelrod, R. The Evolution of Cooperation, Basic Books, 1984.
[3] Bellissimo, A. and Levine, B.N. and Shenoy, P. Exploring the use

of BitTorrent as the basis for a large trace repository. University of
Massachusetts Technical Report, 2004

[4] Cohen, B. Incentives build robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer Systems, 2003

[5] Garbacki, P. and Epema, D.H.J. and van Steen, M. An Amortized Tit-
For-Tat Protocol for Exchanging Bandwidth instead of Content in P2P
Networks. In Proc. First International Conference on Self-Adaptive and
Self-Organizing Systems, 2007

[6] Izal, M. and Urvoy-Keller, G. and Biersack, E.W. and Felber, P.A. and
Hamra, AA and Garces-Erice, L. Dissecting BitTorrent: Five Months in
a Torrent’s Lifetime. In Passive and Active Network Measurement, 2004.

[7] Jun, S. and Ahamad, M. Incentives in BitTorrent induce free riding. In
Proceedings of the 2005 ACM SIGCOMM workshop on Economics of
peer-to-peer systems, 2005

[8] Kash, I.A. and Friedman, E.J. and Halpern, J.Y. Optimizing scrip systems:
Efficiency, crashes, hoarders, and altruists. In Proceedings of the 8th ACM
conference on Electronic commerce, 2007

[9] Legout, A. and Urvoy-Keller, G. and Michiardi, P. Rarest first and
choke algorithms are enough. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, 2006

[10] Locher, T. and Moor, P. and Schmid, S. and Wattenhofer, R. Free Riding
in BitTorrent is Cheap. In 5th Workshop on Hot Topics in Networks
(HotNets), 2006

[11] Piatek, M. and Isdal, T. and Anderson, T. and Krishnamurthy, A. and
Venkataramani, A. Do incentives build robustness in BitTorrent. In Proc.
of NSDI, 2007

[12] Ramachandran, A. and Sarma, A.D. and Feamster, N. BitStore: An
Incentive-Compatible Solution for Blocked Downloads in BitTorrent. In
2nd Joint Workshop on Economics of NetworkedSystems and Incentive-
Based Computing, 2007

[13] Sirivianos, M. and Park, J.H. and Yang, X. and Jarecki, S. Dandelion:
Cooperative Content Distribution with Robust Incentives. In NetEcon,
2006

[14] Stutzbach, D. and Zappala, D. and Rejaie, R. The scalability of swarming
peer-to-peer content delivery. In Proceedings of Networking, 2005.

[15] Urvoy-Keller, G. and Michiardi, P. Impact of Inner Parameters and
Overlay Structure on the Performance of BitTorrent. In Proceedings
of INFOCOM 2006. 25th IEEE International Conference on Computer
Communications, 2006

104


