Evolution, Ecology, and
Optimization of Digital
Organisms

Thomas S. Ray

SFI WORKING PAPER: 1992-08-042

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE

Thomas S. Ray
School of Life & Health Sciences, University of Delaware, Newark, Delaware 19716,
ray@udel.edu, ray@santafe.edu

Evolution, Ecology and Optimization of
Digital Organisms

Digital organisms have been synthesized based on a computer metaphor of organic life in
which CPU time is the “energy” resource and memory is the “material” resource. Memory
is organized into informational “genetic” patterns that exploit CPU time for self-replication.
Mutation generates new forms, and evolution proceeds by natural selection as different “geno-
types” compete for CPU time and memory space. In addition, new genotypes appear which
exploit other “creatures” for informational or energetic resources.

The digital organisms are self-replicating computer programs, however, they can not es-
cape because they run exclusively on a virtual computer in its unique machine language.
From a single ancestral “creature” there have evolved tens of thousands of self-replicating
genotypes of hundreds of genome size classes. Parasites evolved, then creatures that were im-
mune to parasites, and then parasites that could circumvent the immunity. Hyper-parasites
evolved which subvert parasites to their own reproduction and drive them to extinction.
The resulting genetically uniform communities evolve sociality in the sense of creatures that
can only reproduce in cooperative aggregations, and these aggregations are then invaded by
cheating hyper-hyper-parasites.

Diverse ecological communities have emerged. These digital communities have been used
to experimentally study ecological and evolutionary processes: e.g., competitive exclusion
and coexistance, symbiosis, host/parasite density dependent population regulation, the ef-
fect of parasites in enhancing community diversity, evolutionary arms races, punctuated
equilibrium, and the role of chance and historical factors in evolution. It is possible to
extract information on any aspect of the system without disturbing it, from phylogeny or
community structure through time to the “genetic makeup” and “metabolic processes” of
individuals. Digital life demonstrates the power of the computational approach to science
as a complement to the traditional approaches of experiment, and theory based on analysis
through calculus and differential equations.

Optimization experiments have shown that freely evolving digital organisms can optimize
their algorithms by a factor of 5.75 in a few hours of real time. In addition, evolution
discovered the optimization technique of “unrolling the loop”. Evolution may provide a new
method for the optimization or generation of application programs. This method may prove
particularly useful for programming massively parallel machines.

evolution, ecology, artificial life, synthetic life, emergence, self-replication, diversity, adapta-
tion, coevolution, optimization '

Thomas S. Ray
School of Life & Health Sciences, University of Delaware, Newark, Delaware 19716,
ray@udel.edu, ray@santafe.edu

Evolution, Ecology and Optimization of
Digital Organisms

Marcel, a mechanical chessplayer... his exquisite 19th-century brainwork — the
human art it took to build which has been flat lost, lost as the dodo bird ...
But where inside Marcel is the midget Grandmaster, the little Johann Allgeier?
where’s the pantograph, and the magnets? Nowhere. Marcel really is a mechan-
ical chessplayer. No fakery inside to give him any touch of humanity at all.

— Thomas Pynchon, Gravity’s Rainbow.

1 INTRODUCTION

Ideally, the science of biology should embrace all forms of life. However in practice, it
has been restricted to the study of a single instance of life, life on earth. Life on earth is
very diverse, but it is presumably all part of a single phylogeny. Because biology is based
on a sample size of one, we can not know what features of life are peculiar to earth, and
what features are general, characteristic of all life. A truly comparative natural biology
would require inter-planetary travel, which is light years away. The ideal experimental
evolutionary biology would involve creation of multiple planetary systems, some essentially
identical, others varying by a parameter of interest, and observing them for billions of years.

A practical alternative to an inter-planetary or mythical biology is to create synthetic
life in a computer. The objective is not necessarily to create life forms that would serve
as models for the study of natural life, but rather to create radically different life forms,
based on a completely different physics and chemistry, and let these life forms evolve their
own phylogeny, leading to whatever forms are natural to their unique physical basis. These
truly independent instances of life may then serve as a basis for comparison, to gain some
insight into what is general and what is peculiar in biology. Those aspects of life that prove
to be general enough to occur in both natural and synthetic systems can then be studied

2

more easily in the synthetic system. “Evolution in a bottle” provides a valuable tool for the
experimental study of evolution and ecology.

The intent of this work is to synthesize rather than simulate life. This approach starts
with hand crafted organisms already capable of replication and open-ended evolution, and
aims to generate increasing diversity and complexity in a parallel to the Cambrian explosion.
To state such a goal leads to semantic problems, because life must be defined in a way that
does not restrict it to carbon based forms. It is unlikely that there could be general agreement
on such a definition, or even on the proposition that life need not be carbon based. Therefore,
I will simply state my conception of life in its most general sense. I would consider a system
to be living if it is self-replicating, and capable of open-ended evolution. Synthetic life should
self-replicate, and evolve structures or processes that were not designed-in or pre-conceived
by the creator (Pattee [30]; Cariani [5]). '

Core Wars programs, computer viruses, and worms (Cohen [6]; Dewdney [10, 11, 13,
14); Denning [9]; Rheingold {32]; Spafford et al. [33]) are capable of self-replication, but
fortunately, not evolution. It is unlikely that such programs will ever become fully living,
because they are not likely to be able to evolve.

Most evolutionary simulations are not open-ended. Their potential is limited by the
structure of the model, which generally endows each individual with a genome consisting
of a set of pre-defined genes, each of which may exist in a pre-defined set of allelic forms
(Holland [20]; Dewdney [12]; Dawkins [7, 8]; Packard [29]; Ackley & Littman [1]). The object
being evolved is generally a data structure representing the genome, which the simulator
program mutates and/or recombines, selects, and replicates according to criteria designed
into the simulator. The data structures do not contain the mechanism for replication, they
are simply copied by the simulator if they survive the selection phase.

Self-replication is critical to synthetic life because without it, the mechanisms of selection
must also be pre-determined by the simulator. Such artificial selection can never be as
creative as natural selection. The organisms are not free to invent their own fitness functions.
Freely evolving creatures will discover means of mutual exploitation and associated implicit
fitness functions that we would never think of. Simulations constrained to evolve with pre-
defined genes, alleles and fitness functions are dead ended, not alive.

The approach presented here does not have such constraints. Although the model is
limited to the evolution of creatures based on sequences of machine instructions, this may
have a potential comparable to evolution based on sequences of organic molecules. Sets of
machine instructions similar to those used in the Tierra Simulator have been shown to be
capable of “universal computation” (Aho et al. [2]; Minsky [26]; Langton [24]). This suggests
that evolving machine codes should be able to generate any level of complexity.

Other examples of the synthetic approach to life can be seen in the work of Holland [21],
Farmer et al. [16], Langton [22], Rasmussen et al. [31], and Bagley et al. [3]. A character-
istic these efforts generally have in common is that they parallel the origin of life event by
attempting to create prebiotic conditions from which life may emerge spontaneously and
evolve in an open ended fashion.

While the origin of life is generally recognized as an event of the first order, there is

3

another event in the history of life that is less well known but of comparable significance:
the origin of biological diversity and macroscopic multicellular life during the Cambrian
explosion 600 million years ago. This event involved a riotous diversification of life forms.
Dozens of phyla appeared suddenly, many existing only fleetingly, as diverse and sometimes
bizarre ways of life were explored in a relative ecological void (Gould [18]; Morris [27]).

The work presented here aims to parallel the second major event in the history of life,
the origin of diversity. Rather than attempting to create prebiotic conditions from which
life may emerge, this approach involves engineering over the early history of life to design
complex evolvable organisms, and then attempting to create the conditions that will set off a
spontaneous evolutionary process of increasing diversity and complexity of organisms. This
work represents a first step in this direction, creating an artificial world which may roughly
parallel the RNA world of self-replicating molecules (still falling far short of the Cambrian
explosion).

The approach has generated rapidly diversifying cornmunities of self-replicating organisms
exhibiting open-ended evolution by natural selection. From a single rudimentary ancestral
creature containing only the code for self-replication, interactions such as parasitism, im-
munity, hyper-parasitism, sociality and cheating have emerged spontaneously. This paper
presents a methodology and some first results.

Apart from its value as a tool for the study or teaching of ecology and evolution, synthetic
life may have commercial applications. Evolution of machine code provides a new approach
to the design and optimization of computer programs. In an analogy to genetic engineering,
pieces of application code may be inserted into the genomes of digital organisms, and then
evolved to new functionality or greater efficiency.

Here was a world of simplicity and certainty... a world based on the one and
zero of life and death. Minimal, beautiful. The patterns of lives and deaths....
weightless, invisible chains of electronic presence or absence. If patterns of ones
and zeros were “like” patterns of human lives and deaths, if everything about an
individual could be represented in a computer record by a long string of ones and
zeros, then what kind of creature would be represented by a long string of lives
and deaths? It would have to be up one level at least — an angel, a minor god,
something in a UFO,
— Thomas Pynchon, Vineland.

2 METHODS
2.1 THE METAPHOR

Organic life is viewed as utilizing energy, mostly derived from the sun, to organize matter.
By analogy, digital life can be viewed as using CPU (central processing unit) time, to organize
memory. Organic life evolves through natural selection as individuals compete for resources
(light, food, space, etc.) such that genotypes which leave the most descendants increase in

4

frequency. Digital life evolves through the same process, as replicating algorithms compete
for CPU time and memory space, and organisms evolve strategies to exploit one another.
CPU time is thought of as the analog of the energy resource, and memory as the analog of
the spatial resource.

The memory, the CPU and the computer’s operating system are viewed as elements
of the “abiotic” (physical) environment. A “creature” is then designed to be specifically
adapted to the features of the computational environment. The creature consists of a self-
replicating assembler language program. Assembler languages are merely mnemonics for
the machine codes that are directly executed by the CPU. These machine codes have the
characteristic that they directly invoke the instruction set of the CPU and services provided
by the operating system.

All programs, regardless of the language they are written in, are converted into machine
code before they are executed. Machine code is the natural language of the machine, and
machine instructions are viewed by this author as the “atomic units” of computing. It is
felt that machine instructions provide the most natural basis for an artificial chemistry of
creatures designed to live in the computer.

In the biological analogy, the machine instructions are considered to be more like the
amino acids than the nucleic acids, because they are “chemically active”. They actively
manipulate bits, bytes, CPU registers, and the movements of the instruction pointer (see
below). The digital creatures discussed here are entirely constructed of machine instructions.
They are considered analogous to creatures of the RNA world, because the same structures
bear the “genetic” information and carry out the “metabolic” activity.

A block of RAM memory (random access memory, also known as “main” or “core”
memory) in the computer is designated as a “soup” which can be inoculated with creatures.
The “genome” of the creatures consists of the sequence of machine instructions that make
up the creature’s self-replicating algorithm. The prototype creature consists of 80 machine
instructions, thus the size of the genome of this creature is 80 instructions, and its “genotype”
is the specific sequence of those 80 instructions (Appendix C).

2.2 THE VIRTUAL COMPUTER — TIERRA SIMULATOR

The computers we use are general purpose computers, which means, among other things,
that they are capable of emulating through software, the behavior of any other computer
that ever has been built or that could be built (Aho et al. [2]; Minsky [26]; Langton [24]).
We can utilize this flexibility to design a computer that would be especially hospitable to
synthetic life.

There are several good reasons why it is not wise to attempt to synthesize digital or-
ganisms that exploit the machine codes and operating systems of real computers. The most
urgent is the potential threat of natural evolution of machine codes leading to virus or worm
type of programs that could be difficult to eradicate due to their changing “genotypes”.
This potential argues strongly for creating evolution exclusively in programs that run only
on virtual computers and their virtual operating systems. Such programs would be nothing
more than data on a real computer, and therefore would present no more threat than the
data in a data base or the text file of a word processor.

3

Another reason to avoid developing digital organisms in the machine code of a real
computer is that the artificial system would be tied to the hardware and would become
obsolete as quickly as the particular machine it was developed on. In contrast, an artificial
system developed on a virtual machine could be easily ported to new real machines as they
become available.

A third issue, which potentially makes the first two moot, is that the machine languages
of real machines are not designed to be evolvable, and in fact might not support significant
evolution. Von Neuman type machine languages are considered to be “brittle”, meaning
that the ratio of viable programs to possible programs is virtually zero. Any mutation or
recombination event in a real machine code is almost certain to produce a non-functional
program. The problem of brittleness can be mitigated by designing a virtual computer
whose machine code is designed with evolution in mind. Farmer & Belin [17] have suggested
that overcoming this brittleness and “Discovering how to make such self-replicating patterns
more robust so that they evolve to increasingly more complex states is probably the central
problem in the study of artificial life.”

The work described here takes place on a virtual computer known as Tierra (Spanish for
Earth). Tierra is a parallel computer of the MIMD (multiple instruction, multiple data) type,
with a processor (CPU) for each creature. Parallelism is imperfectly emulated by allowing
each CPU to execute a small time slice in turn. Each CPU of this virtual computer contains
two address registers, two numeric registers, a flags register to indicate error conditions, a
stack pointer, a ten word stack, and an instruction pointer. Each virtual CPU is implemented
via the C structure listed in Appendix A. Computations performed by the Tierran CPUs
are probabilistic due to flaws that occur at a low frequency (see Mutation below).

The instruction set of a CPU typically performs simple arithmetic operations or bit
manipulations, within the small set of registers contained in the CPU. Some instructions
move data between the registers in the CPU, or between the CPU registers and the RAM
(main) memory. Other instructions control the location and movement of an “instruction
pointer” (IP). The IP indicates an address in RAM, where the machine code of the executing
program (in this case a digital organism) is located.

The CPU perpetually performs a fetch-decode-execute-increment IP cycle: The machine
code instruction currently addressed by the IP is fetched into the CPU, its bit pattern is
decoded to determine which instruction it corresponds to, and the instruction is executed.
Then the IP is incremented to point sequentially to the next position in RAM, from which
the next instruction will be fetched. However, some instructions like JMP, CALL and RET
directly manipulate the IP, causing execution to jump to some other sequence of instructions
in the RAM. In the Tierra Simulator this CPU cycle is implemented through the time_ slice
routine listed in Appendix B.

2.3 THE TIERRAN LANGUAGE

Before attempting to set up a synthetic life system, careful thought must be given to
how the representation of a programming language affects its adaptability in the sense of
being robust to genetic operations such as mutation and recombination. The nature of the
virtual computer is defined in large part by the instruction set of its machine language. The

6

approach in this study has been to loosen up the machine code in a “virtual bio-computer”,
in order to create a computational system based on a hybrid between biclogical and classical
von Neumann processes.

In developing this new virtual language, which is called “Tierran”, close attention has
been paid to the structural and functional properties of the informational system of biological
molecules: DNA, RNA and proteins. Two features have been borrowed from the biological
world which are considered to be critical to the evolvability of the Tierran language.

First, the instruction set of the Tierran language has been defined to be of a size that is
the same order of magnitude as the genetic code. Information is encoded into DNA through
64 codons, which are translated into 20 amino acids. In its present manifestation, the Tierran
language consists of 32 instructions, which can be represented by five bits, operands included.

Emphasis is placed on this last point because some instruction sets are deceptively small.
Some versions of the redcode language of Core Wars (Dewdney [10, 13]; Rasmussen et al.
[31]) for example are defined to have ten operation codes. It might appear on the surface
then that the instruction set is of size ten. However, most of the ten instructions have one
or two operands. Each operand has four addressing modes, and then an integer. When we
consider that these operands are embedded into the machine code, we realize that they are
in fact a part of the instruction set, and this set works out to be about 10! in size. Similarly,
RISC machines may have only a few opcodes, but they probably all use 32 bit instructions,
so from a mutational point of view, they really have 2°? instructions. Inclusion of numeric
operands will make any instruction set extremely large in comparison to the genetic code.

In order to make a machine code with a truly small instruction set, we must eliminate
numeric operands. This can be accomplished by allowing the CPU registers and the stack
to be the only operands of the instructions. When we need to encode an integer for some
purpose, we can create it in a numeric register through bit manipulations: flipping the low
order bit and shifting left. The program can contain the proper sequence of bit flipping
and shifting instructions to synthesize the desired number, and the instruction set need not
include all possible integers.

A second feature that has been borrowed from molecular biclogy in the design of the
Tierran language is the addressing mode, which is called “address by template”. In most
machine codes, when a piece of data is addressed, or the IP jumps to another piece of code, the
exact numeric address of the data or target code is specified in the machine code. Consider
that in the biological systemn by contrast, in order for protein molecule A in the cytoplasm of
a cell to interact with protein molecule B, it does not specify the exact coordinates where B
is located. Instead, molecule A presents a template on its surface which is complementary to
some surface on B. Diffusion brings the two together, and the complementary conformations
allow them fto interact.

Addressing by template is illustrated by the Tierran JMP (jump) instruction. Each JMP
instruction is followed by a sequence of NOP (no-operation) instructions, of which there are
two kinds: NOP_0 and NOP_1. Suppose we have a piece of code with five instruction in the
following order: JMP NOP_0 NOP_0 NOP_0 NOP_1. The system will search outward in both
directions from the JMP instruction looking for the nearest occurrence of the complementary

7

pattern: NOP_1 NOP_1 NOP_1 NOP._0. If the pattern is found, the instruction pointer will
move to the end of the complementary pattern and resume execution. If the pattern is
not found, an error condition (flag) will be set and the JMP instruction will be ignored (in
practice, a limit is placed on how far the system may search for the pattern).

The Tierran language is characterized by two unique features: a truly small instruction
set without numeric operands, and addressing by template. Otherwise, the language consists
of familiar instructions typical of most machine langunages, e.g., MOV, CALL, RET, POP,
PUSH etc. The complete instruction set is listed in Appendix B.

2.4 THE TIERRAN OPERATING SYSTEM

The Tierran virtual computer needs a virtual operating system that will be hospitable to
digital organisms. The operating system will determine the mechanisms of interprocess com-
munication, memory allocation, and the allocation of CPU time among competing processes.
Algorithms will evolve so as to exploit these features to their advantage. More than being a
mere aspect of the environment, the operating system together with the instruction set will
determine the topology of possible interactions between individuals, such as the ability of
pairs of individuals to exhibit predator-prey, parasite-host or mutualistic relationships.

2.4.1 Memory Allocation — Cellularity

The Tierran computer operates on a block of RAM of the real computer which is set
aside for the purpose. This block of RAM is referred to as the “soup”. In most of the work
described here the soup consisted of about 60,000 bytes, which can hold the same number of
Tierran machine instructions. Each “creature” occupies some block of memory in this soup.

Cellularity is one of the fundamental properties of organic life, and can be recognized
in the fossil record as far back as 3.6 billion years (Barbieri [4]). The cell is the original
individual, with the cell membrane defining its limits and preserving its chemical integrity.
An analog to the cell membrane is needed in digital organisms in order to preserve the
integrity of the informational structure from being disrupted easily by the activity of other
organisms. The need for this can be seen in Artificial Life models such as cellular automata
where virtual state machines pass through one another (Langton [22, 23]), or in core wars type
simulations where coherent structures demolish one another when they come into contact
(Dewdney [10, 13]; Rasmussen et al. [31]).

Tierran creatures are considered to be cellular in the sense that they are protected by a
“semi-permeable membrane” of memory allocation. The Tierran operating system provides
memory allocation services. Each creature has exclusive write privileges within its allocated
block of memory. The “size” of a creature is just the size of its allocated block (e.g., 80
instructions). This usually corresponds to the size of the genome. This “membrane” is
described as “semi-permeable” because while write privileges are protected, read and execute
privileges are not. A creature may examine the code of another creature, and even execute
it, but it can not write over it. Each creature may have exclusive write privileges in at most
two blocks of memory: the one that it is born with which is referred to as the “mother
cell”, and a second block which it may obtain through the execution of the MAI (memory
allocation) instruction. The second block, referred to as the “daughter cell”, may be used to
grow or reproduce into.

When Tierran creatures “divide”, the mother cell loses write privileges on the space of
the daughter cell, but is then free to allocate another block of memory. At the moment of
division, the daughter cell is given its own instruction pointer, and is free to allocate its own
second block of memory.

2.4.2 Time Sharing — The Slicer

The Tierran operating system must be multi-tasking (or parallel) in order for a commu-
nity of individual creatures to live in the soup simultaneously. The system doles out small
slices of CPU time to each creature in the soup in turn. The system maintains a circular
queue called the “slicer queue”. As each creature is born, a virtual CPU is created for it,
and it enters the slicer queue just ahead of its mother, which is the active creature at that
time. Thus the newborn will be the last creature in the soup to get another time slice after
the mother, and the mother will get the next slice after its daughter. As long as the slice
size is small relative to the generation time of the creatures, the time sharing system causes
the world to approximate parallelism. In actuality, we have a population of virtual CPUs,
each of which gets a slice of the real CPU’s time as it comes up in the queue.

The number of instructions to be executed in each time slice may be set proportional
to the size of the genome of the creature being executed, raised to a power. If the “slicer
power” is equal to one, then the slicer is size neutral, the probability of an instruction being
executed does not depend on the size of the creature in which it occurs. If the power is
greater than one, large creatures get more CPU cycles per instruction than small creatures.
If the power is less than one, small creatures get more CPU cycles per instruction. The
power determines if selection favors large or small creatures, or is size neutral. A constant
slice size selects for small creatures.

2.4.3 Mortality — The Reaper

Self-replicating creatures in a fixed size soup would rapidly fill the soup and lock up the
system. To prevent this from occurring, it is necessary to include mortality. The Tierran
operating system includes a “reaper” which begins “killing” creatures from a queue when the
memory fills to some specified level (e.g., 80%). Creatures are killed by deallocating their
memory, and removing them from both the reaper and slicer queues. Their “dead” code is
not removed from the soup.

In the present system, the reaper uses a linear queue. When a creature is born it enters the
bottom of the queue. The reaper always kills the creature at the top of the queue. However,
individuals may move up or down in the reaper queue according to their success or failure
at executing certain instructions. When a creature executes an instruction that generates
an error condition, it moves one position up the queue, as long as the individual ahead of it
in the queue has not accumulated a greater number of errors. Two of the instructions are
somewhat difficult to execute without generating an error, therefore successful execution of
these instructions moves the creature down the reaper queue one position, as long as it has
not accumulated more errors than the creature below it.

The effect of the reaper queue is to cause algorithms which are fundamentally flawed to
rise to the top of the queue and die. Vigorous algorithms have a greater longevity, but in
general, the probability of death increases with age.

9

2.4.4 Mutation

In order for evolution to occur, there must be some change in the genome of the creatures.
This may occur within the lifespan of an individual, or there may be errors in passing along
the genome to offspring. In order to insure that there is genetic change, the operating system
randomly flips bits in the soup, and the instructions of the Tierran language are imperfectly
executed.

Mutations occur in two circumstances. At some background rate, bits are randomly
selected from the entire soup (e.g., 60,000 instructions totaling 300,000 bits) and flipped.
This is analogous to mutations caused by cosmic rays, and has the effect of preventing
any creature from being immortal, as it will eventually mutate to death. The background
mutation rate has generally been set at about one bit flipped for every 10,000 Tierran
instructions executed by the system.

In addition, while copying instructions during the replication of creatures, bits are ran-
domly flipped at some rate in the copies. The copy mutation rate is the higher of the two,
and results in replication errors. The copy mutation rate has generally been set at about
one bit flipped for every 1,000 to 2,500 instructions moved. In both classes of mutation, the
interval between mutations varies randomly within a certain range to avoid possible periodic
effects.

In addition to mutations, the execution of Tierran instructions is flawed at a low rate. For
most of the 32 instructions, the result is off by plus or minus one at some low frequency. For
example, the increment instruction normally adds one to its register, but it sometimes adds
two or zero. The bit flipping instruction normally flips the low order bit, but it sometimes
flips the next higher bit or no bit. The shift left instruction normally shifts all bits one bit
to the left, but it sometimes shifts left by two bits, or not at all. In this way, the behavior
of the Tierran instructions is probabilistic, not fully deterministic.

It turns out that bit flipping mutations and flaws in instructions are not necessary to gen-
erate genetic change and evolution, once the community reaches a certain state of complexity.
Genetic parasites evolve which are sloppy replicators, and have the effect of moving pieces
of code around between creatures, causing rather massive rearrangements of the genomes.
The mechanism of this ad hoc sexuality has not been worked out, but is likely due to the
parasites’ inability to discriminate between live, dead or embryonic code.

Mutations result in the appearance of new genotypes, which are watched by an automated
genebank manager. In one implementation of the manager, when new genotypes replicate
twice, producing a genetically identical offspring at least once, they are given a unique name
and saved to disk. Fach genotype name contains two parts, a number and a three letter
code. The number represents the number of instructions in the genome. The three letter
code is used as a base 26 numbering system for assigning a unique label to each genotype in
a size class. The first genotype to appear in a size class is assigned the label aaa, the second
is assigned the label aab, and so on. Thus the ancestor is named 80aaa, and the first mutant
of size 80 is named 80aab. The first creature of size 45 is named 45aaa.

The genebanker saves some additional information with each genome: the genotype name
of its immediate ancestor which makes possible the reconstruction of the entire phylogeny;

10

the time and date of origin; “metabolic” data including the number of instructions executed
in the first and second reproduction, the number of errors generated in the first and second
reproduction, and the number of instructions copied into the daughter cell in the first and
second reproductions (see Appendix C, D); some environmental parameters at the time of
origin including the search limit for addressing, and the slicer power, both of which affect
selection for size.

2.5 THE TIERRAN ANCESTOR

I have used the Tierran language to write a single self-replicating program which is 80
instructions long. This program is referred to as the “ancestor”, or alternatively as genotype
0080aaa (Fig. 1). The ancestor is a minimal self-replicating algorithm which was originally
written for use during the debugging of the simulator. No functionality was designed into
the ancestor beyond the ability to self-replicate, nor was any specific evolutionary poten-
tial designed in. The commented Tierran assembler and machine code for this program is
presented in Appendix C.

The ancestor examines itself to determine where in memory it begins and ends. The
ancestor’s beginning is marked with the four no-operation template: 1 1 1 1, and its ending
is marked with 1 1 1 0. The ancestor locates its beginning with the five instructions: ADRB,
NOP_0, NOP_0, NOP_O, NOP_0. This series of instructions causes the system to search
backwards from the ADRB instruction for a template complementary to the four NOP_0
instructions, and to place the address of the complementary template (the beginning) in the
ax register of the CPU (see Appendix A). A similar method is used to locate the end.

Having determined the address of its beginning and its end, it subtracts the two to
calculate its size, and allocates a block of memory of this size for a daughter cell. It then
calls the copy procedure which copies the entire genome into the daughter cell memory,
one instruction at a time. The beginning of the copy procedure is marked by the four no-
operation template: 1 1 0 0. Therefore the call to the copy procedure is accomplished with
the five instructions: CALL, NOP_0, NOP_0, NOP_1, NOP_1.

When the genome has been copied, it executes the DIVIDE instruction, which causes the
creature to lose write privileges on the daughter cell memory, and gives an instruction pointer
to the daughter cell (it also enters the daughter cell into the slicer and reaper queues). After
this first replication, the mother cell does not examine itself again; it proceeds directly to
the allocation of another daughter cell, then the copy procedure is followed by cell division,
in an endless loop.

Fourty-eight of the eighty instructions in the ancestor are no-operations. Groups of four
no-operation instructions are used as complementary templates to mark twelve sites for
internal addressing, so that the creature can locate its beginning and end, call the copy
procedure, and mark addresses for loops and jumps in the code, etc. The functions of these
templates are commented in the listing in Appendix C.

11

3 RESULTS
3.1 EVOLUTION

Evolutionary runs of the simulator are begun by inoculating the soup of about 60,000
instructions with a single individual of the 80 instruction ancestral genotype. The passage
of time in a run is measured in terms of how many Tierran instructions have been executed
by the simulator. The original ancestral cell executes 839 instructions in its first replication,
and 813 for each additional replication. The initial cell and its replicating daughters rapidly
fill the soup memory to the threshold level of 80% which starts the reaper. Typically, the
system executes about 400,000 instructions in filling up the soup with about 375 individuals
of size 80 (and their gestating daughter cells). Once the reaper begins, the memory remains
roughly 80% filled with creatures for the remainder of the run.

3.1.1 Micro-Evolution

If there were no mutations at the outset of the run, there would be no evolution. However,
the bits flipped as a result of copy errors or background mutations result in creatures whose
list of 80 instructions (genotype) differs from the ancestor, usually by a single bit difference
in a single instruction.

Mutations in and of themselves, can not result in a change in the size of a creature, they
can only alter the instructions in its genome. However, by altering the genotype, mutations
may affect the process whereby the creature examines itself and calculates its size, potentially
causing it to produce an offspring that differs in size from itself.

Four out of the five possible mutations in a no-operation instruction convert it into
another kind of instruction, while one out of five converts it into the complementary no-
operation. Therefore 80% of mutations in templates destroy or change the size of the tem-
plate, while one in five alters the template pattern. An altered template may cause the
creature to make mistakes in self examination, procedure calls, or looping or jumps of the
instruction pointer, all of which use templates for addressing.

3.1.1.1 parasites

An example of the kind of error that can result from a mutation in a template is a
mutation of the low order bit of instruction 42 of the ancestor (Appendix C). Instruction 42
is a NOP_0, the third component of the copy procedure template. A mutation in the low
order bit would convert it into NOP_1, thus changing the template from 11 00to: 111 0.
This would then be recognized as the template used to mark the end of the creature, rather
than the copy procedure.

A creature born with a mutation in the low order bit of instruction 42 would calculate its
size as 45. It would allocate a daughter cell of size 45 and copy only instructions 0 through
44 into the daughter cell. The daughter cell then, would not include the copy procedure.
This daughter genotype, consisting of 45 instructions, is named 0045aaa.

Genotype 0045aaa (Fig. 1) is not able to self-replicate in isolated culture. However, the
semi-permeable membrane of memory allocation only protects write privileges. Creatures

12

may match templates with code in the allocated memory of other creatures, and may even
execute that code. Therefore, if creature 0045aaa is grown in mixed culture with 0080aaa,
when it attempts to call the copy procedure, it will not find the template within its own
genome, but if it is within the search limit (generally set at 200-400 instructions) of the
copy procedure of a creature of genotype 0080aaa, it will match templates, and send its
instruction pointer to the copy code of 0080aaa. Thus a parasitic relationship is established
(see ECOLOGY below). Typically, parasites begin to emerge within the first few million
instructions of elapsed time in a run.

3.1.1.2 immunity to parasites

At least some of the size 79 genotypes demonstrate some measure of resistance to para-
sites. If genotype 45aaa is introduced into a soup, flanked on each side with one individual of
genotype 0079aab, 0045aaa will initially reproduce somewhat, but will be quickly eliminated
from the soup. When the same experiment is conducted with 0045aaa and the ancestor, they
enter a stable cycle in which both genotypes coexist indefinitely. Freely evolving systems
have been observed to become dominated by size 79 genotypes for long periods, during which
parasitic genotypes repeatedly appear, but fail to invade.

3.1.1.3 circumvention of immunity to parasites

Occasionally these evolving systems dominated by size 79 were successfully invaded by
parasites of size 51. When the immune genotype 0079aab was tested with 0051aao (a direct,
one step, descendant of 0045aaa in which instruction 39 is replaced by an insertion of seven
instructions of unknown origin), they were found to enter a stable cycle. Evidently 0051aao
has evolved some way to circumvent the immunity to parasites possessed by 0079aab. The
fourteen genotypes 0051aaa through 0051laan were also tested with 0079aab, and none were
able to invade.

3.1.1.4 hyper-parasites

Hyper-parasite have been discovered, (e.g., 0080gai, which differs by 19 instructions from
the ancestor, Fig. 1). Their ability to subvert the energy metabolism of parasites is based
on two changes. The copy procedure does not return, but jumps back directly to the proper
address of the reproduction loop. In this way it effectively seizes the instruction pointer
from the parasite. However it is another change which delivers the coup de grace: after each
reproduction, the hyper-parasite re-examines itself, resetting the bx register with its location
and the cx register with its size. After the instruction pointer of the parasite passes through
this code, the CPU of the parasite contains the location and size of the hyper-parasite and
the parasite thereafter replicates the hyper-parasite genome.

3.1.1.5 social hyper-parasites

Hyper-parasites drive the parasites to extinction. This results in a community with a
relatively high level of genetic uniformity, and therefore high genetic relationship between
individuals in the community. These are the conditions that support the evolution of social-
ity, and social hyper-parasites soon dominate the community. Social hyper-parasites (Fig.
2) appear in the 61 instruction size class. For example, 0061acg is social in the sense that it
can only self-replicate when it occurs in aggregations. When it jumps back to the code for

13

self-examination, it jumps to a template that occurs at the end rather than the beginning
of its genome. If the creature is flanked by a similar genome, the jump will find the target
template in the tail of the neighbor, and execution will then pass into the beginning of the
active creature’s genome. The algorithm will fail unless a similar genome occurs just before
the active creature in memory. Neighboring creatures cooperate by catching and passing on
jumps of the instruction pointer.

It appears that the selection pressure for the evolution of sociality is that it facilitates size
reduction, The social species are 24% smaller than the ancestor. They have achieved this size
reduction in part by shrinking their templates from four instructions to three instructions.
This means that there are only eight templates available to them, and catching each others
jumps allows them to deal with some of the consequences of this limitation as well as to
make dual use of some templates.

3.1.1.6 cheaters: hyper-hyper-parasites

The cooperative social system of hyper-parasites is subject to cheating, and is eventually
invaded by hyper-hyper-parasites (Fig. 2). These cheaters (e.g., 0027aab) position themselves
between aggregating hyper-parasites so that when the instruction pointer is passed between
them, they capture it.

3.1.1.7 a novel self-examination

All creatures discussed thus far mark their beginning and end with templates. They then
locate the addresses of the two templates and determine their genome size by subtracting
them. In one run, creatures evolved without a template marking their end. These creatures
located the address of the template marking their beginning, and then the address of a
template in the middle of their genome. These two addresses were then subtracted to
calculate half of their size, and this value was multiplied by two (by shifting left) to calculate
their full size.

3.1.1.8 an intricate adaptation

The arms race described in the paragraphs above took place over a period of a billion
instructions executed by the system. Another run was allowed to continue for fifteen billion
instructions, but was not examnined in detail. A creature present at the end of the run
was examined and found to have evolved an intricate adaptation. The adaptation is an
optimization technique known as “unrolling the loop”.

The central loop of the copy procedure performs the following operations: 1) copies an
instruction from the mother to the daughter, 2) decrements the cx register which initially
contains the size of the parent genome, 3) tests to see if cx is equal to zero, if so it exits the
loop, if not it remains in the loop, 4) increment the ax register which contains the address
in the daughter where the next instruction will be copied to, 5) increment the bx register
which contains the address in the mother where the next instruction will be copied from, 6)
jump back to the top of the loop.

The work of the loop is contained in steps 1, 2, 4 and 5. Steps 3 and 6 are overhead. The
efficiency of the loop can be increased by duplicating the work steps within the loop, thereby
saving on overhead. The creature from the end of the long run had repeated the work steps

14

three times within the loop, as illustrated in Appendix E, which compares the copy loop of
the ancestor with that of its decendant.

3.1.2 Macro-Evolution

When the simulator is run over long periods of time, hundreds of millions or billions of
instructions, various patterns emerge. Under selection for small sizes there is a proliferation of
small parasites and a rather interesting ecology (see below). Selection for large creatures has
usually lead to continuous incrementally increasing sizes (but not to a trivial concatenation of
creatures end-to-end) until a plateau in the upper hundreds is reached. In one run, selection
for large size lead to apparently open ended size increase, evolving genomes larger than
23,000 instructions in length. These evolutionary patterns might be described as phyletic
gradualism.

The most thoroughly studied case for long runs is where selection, as determined by the
slicer function, is size neutral. The longest runs to date (as much as 2.86 billion Tierran
instructions) have been in a size neutral environment, with a search limit of 10,000, which
would allow large creatures to evolve if there were some algorithmic advantage to be gained
from larger size. These long runs illustrate a pattern which could be described as periods
of stasis punctuated by periods of rapid evolutionary change, which appears to parallel the
pattern of punctuated equilibrium described by Eldredge & Gould [15] and Gould & Eldredge
[19].

Initially these communities are dominated by creatures with genome sizes in the eighties.
This represents a period of relative stasis, which has lasted from 178 million to 1.44 billion
instructions in the several long runs conducted to date. The systems then very abruptly (in
a span of 1 or 2 million instructions) evolve into communities dominated by sizes ranging
from about 400 to about 800. These communities have not yet been seen to evolve into
communities dominated by either smaller or substantially larger size ranges.

The communities of creatures in the 400 to 800 size range also show a long-term pattern of
punctuated equilibrium. These communities regularly come to be dominated by one or two
size classes, and remain in that condition for long periods of time. However, they inevitably
break out of that stasis and enter a period where no size class dominates. These periods of
rapid evolutionary change may be very chaotic. Close observations indicate that at least at
some of these times, no genotypes breed true. Many self-replicating genotypes will coexist
in the soup at these times, but at the most chaotic times, none will produce offspring which
are even their same size. Eventually the system will settle down to another period of stasis
dominated by one or a few size classes which breed true.

3.2 DIVERSITY

Most observations on the diversity of Tierran creatures have been based on the diversity
of size classes. Creatures of different sizes are clearly genetically different; as their genomes
are of different sizes. Different sized creatures would have some difficulty engaging in re-
combination if they were sexual, thus it is likely that they would be different species. In a
run of 526 million instructions, 366 size classes were generated, 93 of which achieved abun-
dances of five or more individuals. In a run of 2.56 billion instructions, 1180 size classes were
generated, 367 of which achieved abundances of five or more.

15

