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Abstract. Recent work has shown how socially inspired mechanisms developed within social sci-
ence simulations can be applied to a number of application domains in distributed systems engineer-
ing. Here we proposed a general mechanism based on an evolutionary “group selection” process in
which individual entities (agents, nodes or components) dynamically copy the behavior of other en-
tities if they achieve higher performance. We present this approach by beginning to sketch a generic
“design pattern” and then show how it can be applied in different domains. Finally we discuss some
open issues and future work.

1 Introduction

Recent models from computational social science and theoretical biology have demon-
strated novel processes of group selection [23, 25, 28]. They demonstrate how selfish
behavior at the individual level can, never-the-less, lead to highly co-operative and
co-ordinated emergent behaviour at the collective level.

Here we discuss the formulation of a group selection “design pattern” which bal-
ances the often contradictory forces between individual goals and collective goals in
distributed systems without the need for any centralised structures or control.

Previous work has shown how biologically inspired approaches can be presented
in the form of design patterns [4] and, indeed, some have suggested that the ”tag”
approach (see later) could be formulated as a pattern [7].

The group selection approach is of great potential value for the engineering of mas-
sive, decentralized and open distributed computer systems because it embodies several
attractive features: It is general, applicable to wide range of scenarios; it is scalable,
allowing many millions of entities to coordinate efficiently; it is robust, meaning that
entities may enter and leave the system without disrupting interaction drastically; it
is self-organising requiring no central control or administration; it is resistant to cer-
tain kinds of free-riding, when entities try to exploit the system for their own benefit.
Importantly, because entities only need to act on their own local performance criteria,
there is no need for global information or the representation or enforcement of group
or system level goals.

Group selection relies on the dynamic formation and dissolution of groups. Over
time individual entities may change groups by moving to those that offer better indi-
vidual performance. Interaction between entities that determine performance is mainly
restricted to those sharing the same group. Essentially then, in a nutshell, groups that
support high performance for the individuals that comprise them grow and prosper
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whereas exploitative or dysfunctional groups dissolve as individuals move away. Hence
functional groups, in terms of satisfying individual goals, are selected over time.

Key aspects that define applications of group selection are: How group boundaries
are formed; the nature of the interactions between entities within each group; the way
that each entity calculates their individual performance (or utility) and how entities
migrate between groups.

The success of any application of group selection is judged by how well the sys-
tem self-organises towards achieving a collective goal - whatever that may be. Often
this will be maximising the sum of individual performances but could involve other
measures such as equality or fairness for example.

In the following sections we describe, in overview, several realisations of group
selection applied to various application domains. For each realization we describe the
domain or scenario, the implementation of each key aspects and give some results of
simulations. More detail on each model can be found in the associated papers cited in
each section.

Before we introduce our set of application models we overview and compare some
recent social and biological models of group selection from which our approach is
inspired. Then we present an abstract computational model which identifies the key
assumptions, aspects and emergent process we associate with group selection. We then
present each application model within this standard template indicating how each key
aspect is implemented.

We believe the work presented in this paper contributes as a step towards a general
“design pattern” for applying group selection in information systems. However we
believe much more work needs to be done to achieve our goal. In the final section we
discuss some open issues and indicate potential ways forward.

2 Recent social and biological models of group selection

In almost all proposed social and biological models of group selection, in order to test
if group selection is stronger than individual selection, populations are composed of
individuals that can take one of two kinds of social behaviour (or strategy). They can
either act pro-socially, for the good of their group, or they can act selfishly for their
own individual benefit at the expense of the group. This captures a form of commons
tragedy [16].

Often this is formalised as a Prisoners Dilemma (PD) or a donation game in which
individuals receive fitness payoffs based on the composition of their group. In either
case there is a fitness cost c that a pro-social individual incurs and an associated fit-
ness benefit b that individuals within a group gain. A group containing only pro-social
individuals will lead each to gain a fitness of b− c. However, a group containing only
selfish individuals will lead each to obtain a fitness of zero. But a selfish individual
within a group of pro-socials will gain highest fitness. In this case the selfish individ-
ual will gain b but the rest will gain less than b− c. Given that b and c are positive
then it is always in an individuals interests (to maximise fitness) to behave selfishly. In
an evolutionary scenario in which the entire population interacts within a single group
then selfish behaviour will tend to be selected because this increases fitness. This ul-
timately leads to an entire population of selfish individuals and a suboptimal average



population level fitness of zero. This is the Nash Equilibrium [20] and an Evolutionary
Stable Strategy for such a system [26].

There have been various models of cooperation and pro-social behaviour based on
reciprocity using iterated strategies within the PD [3]. However, we are interested in
models which do not require reciprocity since these are more generally applicable. In
many situations, such as large-scale human systems or distributed computer systems,
repeated interactions may be rare or hard to implement due to large population sizes
(of the order of millions) or cheating behaviour that allow individuals (or computer
nodes) to fake new identities.

2.1 Tag model

In [15] a tag model of cooperation was proposed which selected for pro-social groups.
It models populations of evolving agents that form groups with other agents who share
an initially arbitrary tag or social marker. The tag approach was originally proposed
by Holland [17] and developed by Riolo [22, 23]. The tag is often interpreted as an
observable social label (e.g. style of dress, accent etc.) and can be seen as a group
membership marker. It can take any mutable form in a model (e.g. integer or bitstring).
The strategies of the agents evolve, as do the tags themselves. Interestingly this very
simple scheme structures the population into a dynamic set of tag-groups and selects
for pro-social behaviour over a wide range of conditions. Figure 1 shows a schematic
diagram of tag-group evolution and an outline algorithm that generates it.

Outline algorithm for tag model:

for each generation loop

    interaction within groups (obtain fitness)

    reproduce individuals based on fitness

    with Prob(mt) individuals form new group

    with Prob(ms) individuals flip strategy

end generation loop

Group boundary: tag stored by each

individual defines group membership

Group formation and migration:

probabilistic mutation of tag
(a) (b) (c)

Fig. 1. Schematic of the evolution of groups in the tag model. Three generations (a-c) are shown. White individuals
are pro-social, black are selfish. Individuals sharing the same tag are shown clustered and bounded by large circles.
Arrows indicate group linage. Migration between groups is not shown.

In general it was found that pro-social behaviour was selected when b > c and
mt >> ms, where mt is the mutation rate applied to the tag and ms is the mutation rate
applied to the strategy. In this model groups emerge from the evolution of the tags.
Group splitting is a side effect of mutation applied to a tag during reproduction. A
subsequent tag model [23] produced similar results although it cannot be applied to
pro-sociality in general because it does not allow for fully selfish behaviour of identi-
cally tagged individuals [24, 8].



2.2 Network-rewiring model

Network rewiring models for group selection have been proposed with direct appli-
cation to peer-to-peer (P2P) protocol design [13, 14]. In these models, which were
adapted from the tag model described above, individuals are represented as nodes on
a graph. Group membership is defined by the topology of the graph. Nodes directly
connected are considered to be within the same group. Each node stores the links that
define its neighbours. Nodes evolve by copying both the strategies and links (with
probability t) of other nodes in the population with higher utility than themselves. Us-
ing this simple learning rule the topology and strategies evolve promoting pro-social
behaviour and structuring the population into dynamic arrangements of disconnected
clusters (where t = 1) or small-world topologies (where 0.5 < t < 1). Group splitting
involves nodes disconnecting from all their current neighbours and reconnecting to a
single randomly chosen neighbour with low probability mt. As with the tag model pro-
social behaviour is selected when b > c and mt >> ms, where ms is the probability
of nodes spontaneously changing strategies. Figure 2 shows a schematic of network
evolution (groups emerge as cliques within the network) and an outline algorithm that
implements it.

Outline algorithm for network model:

for each generation loop

    interaction within groups (obtain fitness)

    reproduce individuals based on fitness

    with Prob(t) copy new links

    with Prob(ms) individuals flip strategy

end generation loop

Group boundary: individuals directly linked

in the network

Group formation and migration:copying of

links probabilistically
(a) (b) (c)

Fig. 2. Schematic of the evolution of groups (cliques) in the network-rewiring model. Three generations (a-c) are
shown. White individuals are pro-social, black are selfish. Arrows indicate group linage. Notice the similarity to the
tag model in figure 1.

In this model we have translated dynamics and properties similar to the tag model
into a graph. This is important because P2P networks can be viewed as graphs. Hence
with relatively modest translation effort we were able to formulate a general P2P proto-
col that would promote pro-social behaviour over a wide rage of potential application
domains. In [14] we applied the protocol to a simulated file-sharing scenario. In [13]
we proposed a protocol that could be applied to collective spam filtering. In [12] the
same fundamental rewiring protocol was applied to a scenario requiring nodes to adopt
specialised roles or skills within their groups, not just pro-social behaviour alone, to
maximise social benefit.

Interestingly it has also been shown recently [21] in a similar graph model tested
over fixed topologies (e.g. small-world, random, lattice, scale-free) that under a sim-
ple evolutionary learning rule pro-social behaviour can be sustained in some limited
situations if b/c > k, where k is the average number neighbours over all nodes (the av-



erage degree of the graph). This implies that if certain topologies can be imposed then
pro-social behaviour can be sustained without rewiring of the topology dynamically.
Although analysis of this model is at an early stage it would appear that groups form
via clusters of pro-social strategies forming and migrating over the graph via nodes
learning from neighbours.

Also a recent network model shows similar properties [25].

2.3 Group-splitting model

In [28] a group selection model is given that sustains pro-social behaviour if the pop-
ulation is partitioned into m groups of maximum size n so long as b/c > 1 + n/m. In
this model group structure, splitting and extinction is assumed a priori and mediated
by exogenous parameters. Splitting is accomplished by explicitly limiting group size
to n, when a group grows through reproduction beyond n it is split with (high) proba-
bility q into two groups by probabilistically reallocating each individual to one of the
new groups. By endogenously controlling n and m a detailed analysis of the model was
derived such that the cost / benefit condition is shown to be necessary rather than just
sufficient. The model also allows for some migration of individuals between groups
outside of the splitting process. Significantly, the group splitting model can potentially
be applied recursively to give multilevel selection – groups of groups etc. However,
this requires explicit splitting and reallocation mechanisms at each higher level. Figure
3 shows a schematic of group-splitting evolution and an outline algorithm that imple-
ments it.

Outline algorithm for split model:

for each generation loop

    interaction within groups (obtain fitness)

    reproduce individuals based on fitness

    with Prob(q) split any group > m in size

   eliminate random group

end generation loop

Group boundary: individuals exogenously

given group membership

Group formation and migration: splitting of

group when size > m.
(a) (b) (c)

Fig. 3. Schematic of the evolution of groups in the group-splitting model. Three generations (a-c) are shown. White
individuals are pro-social, black are selfish. Individuals sharing the same group are shown clustered and bounded
by large circles. Arrows indicate group linage. Migration between groups is not shown.

3 Abstract Computational Model

In order to describe different realizations of the group selection mechanism in infor-
mation systems applications we abstract assumptions and key aspects in the context
of computational entities (e.g. agents, nodes in a network, individual processes etc.).
Each instantiation of the mechanism specifies a way of implementing each aspect such
that the emergent process occurs.



3.1 Assumptions

The group selection approach can be applied to systems where the following general
assumptions hold:

– A system is composed of individual entities that can benefit from interaction with
other entities

– The population of entities is partitioned into groups such that interaction is mainly
limited to entities within the same group

– Entities measure their own performance periodically producing a utility value
– Entities may spontaneously change their behavior and group membership
– Entities may view and copy some state of other entities
– Entities desire to increase their performance (utility)

3.2 Key aspects

We have found, as will be seen in the later application examples, that any instantiation
of the group selection process involves identifying the following aspects of a system -
we use these key aspects as a template by which we related each application of group
selection:

– Collective Goal - A desirable goal that the population of entities should attain.
– Group Boundary Mechanism (Group) - How an entity can locate and communicate

with in-group members.
– Intra-Group Interaction (Interaction) - What kinds of utility effecting interactions

an entity participates in with other in-group members.
– Utility Calculation Metric (Utility) - How an entity calculates a utility value based

on its individual goal and in-group interactions.
– Group Migration Mechanism (Migration) - How migration between groups is per-

formed.

3.3 Emergent Process

By correctly defining the key aspects above an emergent group selection occurs, achiev-
ing the collective goal, following the below general form:

– Entities are grouped in some initially arbitrary way
– Interactions between entities within groups determine entity utilities
– Based on utility comparisons between entities, and possibly randomized change,

group memberships and interaction behavior (strategy) change over time
– Groups which produce high utility for their members tend to grow and persist as

entities join
– Groups which produce low utility for their members tend to disperse as entities

leave
– Hence group beneficial behavior tends to be selected



4 Tag Cooperation

TagWorld is a simple simulation model demonstrating group selection by using a “tag”
method to maintain group boundaries and migration. Tag models have been developed
within computational social science [17, 23]. He we outline a model based on [15].
Although not an application we provide this model as a baseline case illustrating the
key aspects of group selection.

Figure 4 summarizes the key aspects of the model. Note that groups are formed
using ”tags”. These are values associated with agents and identify them as members of
a particular group. They can be copied and observed by other agents. This is a simple
(possibly minimal) way to construct dynamic group boundaries.

Collective Goal Maximize collective utility while there are incentives and opportunities for
selfish egoistical behavior.

Entity Agent - a process or thread running on a processor with inter-agent commu-
nications infrastructure. Each agent stores a Tag and a Strategy (see below).

Group Tag - Agents store a single group ID value called a Tag. All agents storing
the same value are considered to be within the same group.

Interaction PD game - Agents store a pure PD strategy (either C or D) and perodically
play a one-shot game of PD with a randomly chosen in-group member.

Utility Average PD Payoff - Agents periodically calculate a utility by calculating
the average payoff obtained from playing PD games.

Migration Periodically (after each agent has played a game of PD) agents reproduce,
to form a new agent population, probabilistically in proportion to the aver-
age payoff they received (using a roulette wheel selection algorithm). The
population is kept constant in size over generations.

Fig. 4. Key aspects for the TagWorld model

4.1 Interaction

Agents have the task of playing the single round two player Prisoner’s Dilemma (PD)
game with their in-group members. Table 5 shows the so-called payoff matrix for this
simple game. The game is a valuable test because maximum collective utility (pay-
off) requires agents to select a C move but maximum individual utility is obtained by
selecting a D move. Hence if group selection is operating sufficiently well we would
expect to find high levels of C (cooperation) even though agents are trying only to
optimize their own utility.

Cooperate Defect
Cooperate R, R S, T

Defect T, S P, P

Fig. 5. A payoff matrix for the two-player single round Prisoner’s Dilemma (PD) game. Given T > R > P > S∧2R >
T +S the Nash equilibrium is for both players to select Defect but both selecting Cooperate would produce higher
social and individual returns. However, if either player selects Cooperate they are exposed to Defection by their
opponent — hence the dilemma



4.2 Migration

In the TagWorld model migration is a result of reproduction. After each agent in the
population has played a game of PD a new population is reproduced using a standard
“roulette wheel” selection method. If an agent is reproduced, it’s Tag and Strategy
are reproduced and a mutation operation is applied with low probability (randomly
changing the Tag and / or Strategy). This differential reproduction based on utility has
the effect of migrating agents between different tags (groups) over generations and
changing the distribution of strategies in the population.

4.3 Simulation Algorithm

The model was realized as a simulation. The pseudo-code for the simulation is shown
in figure 6. The probability of mutation applied to the the strategy was m = 0.001.
Mutation applied to the Tag was an order of magnitude higher.

LOOP some number of generations
LOOP for each agent (a) in the population

Select a game partner agent (b) with same tag (if possible)
Agents a and b invoke their strategies and get payoffs

END LOOP
Reproduce agents in proportion to their average payoff
Apply mutation to tag and strategy of each reproduced agent with low probability

END LOOP

Fig. 6. Pseudo-code for the TagWorld simulation model.

4.4 Results

It was found that from random (Tag and Strategy) initializations TagWorld rapidly
converged to very high levels of cooperation. Due to mutation the system never con-
verges to a stable 100% cooperative state but over simulation runs of 105 generations
we found over 99% of all PD interactions were mutually cooperative. When all agents
were initialized as defectors we observed that the population still eventually reached
over 99% cooperation. We produced an analysis of this and found the time to reach
high cooperation in generations was dependent on mutation rate m and population size
n. Figure 7 shows a chart of results over various population sizes.

5 File sharing

FileWorld is a simulation model of file-sharing in P2P systems. The goal of the model
is to apply a group selection approach to a file-sharing scenario in which a certain
level of peer altruism is required to maximize the efficiency of the network as a whole.
The task involves nodes sending and serving queries for files. A node measures its
performance by counting the number of query hits it obtains over a time period. The
simulated scenario is modelled after [27]. The group selection key aspects are shown
in figure 8. The results presented in this section are an overview of those given in [14].
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Fig. 7. Simulation and analysis of results for the TagWorld simulation model over different population sizes. Notice
that as the population size increases the time to high cooperation reduces.

Collective Goal Maximize the total number of query hits in the file-sharing network as-a-
whole.

Entity Peer Node - a node in a peer-to-peer overlay network with inter-agent com-
munications infrastructure. Each node stores a neighbor list (or view) and
an Altruism Level (see below). Periodically agents may randomly change
their neighbor list and altruism level.

Group View - nodes store a list of links to other peers called their view. All peers
within the view are considered to be within the same group. Hence produc-
ing an overlapping network of groups.

Interaction Sending and serving queries for files. Peers have a fixed capacity determin-
ing how many query messages they can handle in a given period. Nodes
store an “altruism level” [0..1] which specifies the proportion of capacity
devoted to serving requests from others as opposed to sending their own
requests.

Utility Query Hits - Peers generate their own queries with the capacity left over af-
ter processing others queries. Utility is the number of such answered queries
(or hits) over a given period.

Migration Copying peers with higher utility - Peers periodically select another peer
randomly from the entire population (which may include peers outside the
in-group). If the utility of this other node is higher then the peer copies
its View and Altruism Level (overwriting previous values). By copying the
View the agent migrates to the group of the copied node.

Fig. 8. Key aspects for the FileWorld model.



LOOP some number of cycles
Initialise all node capacities and utilities
LOOP some number of node firings (a time period)

Select a random node (a) from the population
IF node (a) has capacity to generate queries

Decrease capacity by one query
Generate query and pass to all neighbours (see below)
Accumulate number of hits (utility)

END IF
END LOOP
LOOP some number of times

Select randomly a pair of nodes from the population
Copy view and altruism value from higher to lower utility node
Apply mutation with low probability to view and altruism value

END LOOP
END LOOP

When node (b) receives a query:

IF node (b) has capacity to answer queries
Decrease capacity by one query
With ``Answering Power’’ probability produce a ``hit’’
IF no hit produced and query TTL > 0

Reduce TTL
Pass query to all neighbours

END IF
ELSE

Ignore query
END IF

Fig. 9. Pseudo-code for the FileWorld simulation model.

5.1 Interaction

Within a time period nodes are periodically “fired”. When a node is fired, it will gen-
erate a query if it still has spare capacity left to do so. When a node generates a query
it passes it to all its neighbour nodes. If a neighbour node has spare capacity left to
answer another’s queries then it will produce a “hit” with a given probability. Each
node has an “answering power” value which is the probability it can match any query.
If it does not produce a “hit” then it passes on the query to it’s neighbours following
a flood fill approach until some “time to live” (TTL) is reached. In the case of the
FileWorld simulations TTL was set to 3. Conversely if a node has no spare capacity to
answer others queries then it ignores the query without producing a “hit” or passing it
on. Nodes store an “altruism level” which represents a behaviour strategy. Nodes with
an altruism level of zero would always reject queries from others and use all its capac-
ity to generate its own queries. A node with an altruism value of one would devote all
its capacity to answering others queries and never generate any of its own. Hence for
the system to achieve the collective goal, of maximising the number of hits over all
nodes, a balance needs to be found between zero altruism and total altruism because
if all nodes simply wait to serve others queries then no queries will be generated at
all. Conversely if all nodes only generate their own queries and never serve others then
no hits will be produced. For the results presented here the capacities and answering
powers of all nodes were set to the same fixed rates after [27].



5.2 Migration

After a time period nodes refresh their capacities and randomly selected nodes pairs
compare their utilities (total number of hits). Nodes with lower utility copy the altruism
value and neighbour list of nodes with higher utility, also they make a link to the higher
utility node. Old links are dropped. This re-wiring approach means that neighbours
migrate to new neighbourhoods in the network. After a copy operation a “mutation”
is applied with small probability to both links and altruism value. If links are mutated
all links are replaced with a random link. If the altruism value is mutated it is replaced
with uniform random value [0..1].

5.3 Simulation Algorithm

The model was realised as a simulation. The pseudo-code for the simulation is shown
in figure 9. We used the same mutation rates as used in the TagWorld model (see
previous section). A time period, or cycle, comprised NC node firings, where N was
the number of nodes in the population and C = 100 was the capacity of each node.
Both generating or serving a query was assumed to consume one unit of capacity.

5.4 Results

Figure 10 shows a typical run of the FileWorld model. Initial altruism values for each
node were generated uniformly randomly in range [0..1]. Also the initial topology
of the network was randomly generated. The results are for a population size of N4

nodes. We found similar results for large networks up to N = 105. Indeed as in the
TagWorld model we found that larger populations performed better in terms of time to
high performance.

4.4 Results from FileWorld 

In order to gain a baseline benchmark, that measures how the network behaves without the application of the 

evolutionary re-wiring algorithm, we ran 10 trials for 10 cycles on static networks with randomly initialized 

topologies and P values. We did this for a number of network sizes N = [200..51200]. All other values were 

kept as previously described. Since in the static case nothing changes, the averaging over 10 cycles is done 

simply to smooth out the stocasticities of the model. Averaging over 10 different trials (with unique pseudo-

random number seeds) averages over the different initial random network topologies and P values.   

We considered the following two measures for benchmarking: the average number of queries 

generated per node in a cycle (nq) and the average number of hits per node generated per cycle (nh). We 

found that the baseline level for these measures was with low variance nq = 49.45 and nh = 20.13 in all 

cases. Calculating nh / nq gives an average hit rate per query generated = 0.41.  We might expect nq = 0.5 

since the P values are selected uniformly randomly but this slightly lower value is a result of the (random 

selection with replacement) method of firing nodes as described earlier. 
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Figure 7. A typical run for a 104 node network. Notice that nq and 

nh values initially get worse than the baseline values (nq nh 

20) but then quickly improve. 

 

Given these baseline values for nq and nh we can investigate the effect of applying the evolutionary 

rewiring algorithm (ERA). If results give a consistently higher number of hits (nh) by keeping the number of 

queries generated (nq) low then ERA is suppressing the self-interest of the nodes and thus benefiting of the 

Fig. 10. Results for a typical run of the the FileWorld simulation model. The value (nq) shows average number
of queries generated by nodes over time and (nh) shows the averagel number of hits obtained. Notice initially the
population does worse than the purely random configuration but quickly adjusts increasing the number of hits but
reducing flooding of the system with queries. This is due to an optimisation of the altruism value over time.



6 Grid policies

Grid computing originated a decade ago to aggregate distributed computational re-
sources to facilitate scientific computational intensive tasks. The have also been applied
in production systems (enterprise Grids). A Grid computing system is differentiated
from other distributed computer systems because 1) Users request both software and
hardware resources: databases, data files, applications; and processing capacity, stor-
age space, network capacity, and expect those resources to provide quality of service,
and 2) Grid users make concurrent use of several resources from different providers,
requiring resource co-allocation and coordinated utilization. De facto standard Grid
technologies have emerged such as the Globus toolkit [9]. This Grid middleware pro-
vides a set of low-level building blocks enabling the composition of interoperable ser-
vices for distributed resource management and monitoring, as well as for remote task
scheduling.

The Grid problem has been defined as coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organizations [10]. Grid environments
are organized in Virtual Organizations (VOs), associating heterogeneous users and re-
source providers with a common goal. Accomplishment of tasks implies coordination
of VO participant policies for resource management. Such policy coordination gets
complex for grids comprising heterogeneous administrative domains. Manual coordi-
nation becomes infeasible in practice, especially for dynamic Grid VO settings [29].
Addressing those issues will require a shift in engineering approach, from traditional
policy management, to emergent, self-organizing policy management.

Here we apply the group selection pattern to the self-organized coordination of
Grid policies in VOs. GridWorld is a simulation model of Grid policy interactions.
The pattern is sumarized in figure 11. The results presented here give an overview.
More extensive models and details can be found in [5, 6].

Collective Goal Coordinate Grid nodes resource management policies to increase total col-
lective utility.

Entity Grid node - A host machine or device applying a local resource management
policy, with a inter-node communications infrastructure. Each agent stores
a (VO) identifier and a Policy.

Group VO - Grid nodes store a single virtual organisation (VO) identifier. All nodes
storing the same value are considered to be within the same VO or group.

Interaction Policy Coordination game - Grid nodes mantain a resource management
policy (from a pool of three) and perodically play a one-shot policy coordi-
nation game with a randomly chosen in-group (VO) member.

Utility Average coordination game payoff - Grid nodes periodically calculate a util-
ity by calculating the average payoff obtained from playing the policy co-
ordination game with VO members.

Migration Nodes join VOs where they find other nodes performing well and copy the
policies of those nodes. Rrandom migration to a new VOs (mutation) is
applied with a fixed probability m.

Fig. 11. Key aspects for the GridWorld model



6.1 Interaction

Interactions are formulated as a Grid policy coordination game. In the case of just two
different policies in the system, the interaction reduces to a pure coordination game.
The extension to model richer scenarios involves using a more elaborated set of poli-
cies, resulting in a bigger payoff matrix. Consider for example the payoff matrix from
figure 12, with 3 different policies to be coordinated. The payoffs represent the ex-
pected performance derived from interactions between nodes combining each pair of
policies. These three policies (and the payoffs themselves) can be mapped to three real
Grid VO resource sharing policies: you-give-what-you-can (YGWYC) policy, propor-
tional sharing (1/N) policy and you-get-what-you-give (YGWYG) policy [29].

P1 P2 P3
P1 1, 1 0, 0 -1, -1
P2 0, 0 1, 1 0, 0
P3 -1, -1 0, 0 1, 1

Fig. 12. A payoff matrix for the 3-polices single round pure coordination game. The Nash equilibria for both players
is to select matching policies. There is no dilemma in this case. Individual and colective welfare match. However
misscoordination leads to very suboptimal results.

6.2 Migration

Periodically (after each node has played a coordination game) they evolve their re-
source management policies and VO memberships. Nodes join VOs where they find
other nodes performing well and copy the policies of those Nodes. Mutation (random
migration to a new VO) is applied with a fixed probability m. We do not apply policy
mutation because we assume this to be under the control of an administrative authority
and is not necessary for the emergence of coordination assuming a population com-
prising matching policies exists.

6.3 Simulation Algorithm

The model was realized in a simulator, implementing the algorithm in figure 13. First
each Grid node is placed randomly into an initial VO. This initial bootstrapping is
motivated to better model real scenarios where VOs are already in some specific con-
figuration. Node interaction is constrained within each VO. In the case that a VO only
contains a single node then interaction is skipped and the node goes directly to evolu-
tion phase. Evolution is realized as explained in the migration section.

6.4 Results

We performed experiments for 100 Grid nodes evolving over 500 rounds. We measured
the performance as the average utility of the nodes in the system after round 500. We
considered three different mutation rates. Figure 14 shows the results obtained. Notice
how even under very high mutation rates (m=0.1), high levels of coordination are still
achieved. This indicates robustness of the mechanism in highly dynamic environments.
Figure 15 shows two typical individual runs for two different mutation rates.



Bootstrap Nodes in VOs (groups identified by a Tag)
LOOP a number of rounds

LOOP for each VO
LOOP for each node in the VO (operation phase)

               Interact with another Node from the VO (i.e. has same Tag)
Collect Payoff

ENDLOOP
ENDLOOP
LOOP each Node in the Grid (evolution phase)

Select random partner node in the Grid
IF partner outperforms Node

 Copy partner Tag (migrate to its VO) and policy
            Mutate: node applies probabilistic Tag mutation

END IF
ENDLOOP

ENDLOOP

Fig. 13. Pseudo-code for the GridWorld simulation model.

m= 0.001 m= 0.01 m= 0.1
Average Utility 0.97 (0.01) 0.97 (0.00) 0.85 (0.01)

Fig. 14. Performance results for a VO policy coordination game. Mean (and standard deviation) of average utility
after 500 rounds over 10 experiment runs for different mutation rates.
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Fig. 15. Results from two runs of the GridWorld model comparing two different mutation rates (m). Notice that
over a number of rounds the average grid node utility increases.



7 Selfish broadcasting

A broadcast operation involves one node in a network sending a message to the en-
tire network population. However it is not practical in many situations for every single
node to connect directly to all other nodes. A simple way of implementing a broadcast
function is for each node to pass all new broadcast messages it receives to all of the
other nodes it connects to (its neighbors). This way a message initiated from any node
will eventually reach all other connected nodes in the network. This method is called
the flood fill (FF) approach and although simple and robust it can be highly costly
in terms of the total number of messages required to be passed: FF will send L mes-
sages (where L is the total number of links in the network) assuming the network is
connected. This can be highly sub-optimal.

Collective Goal Maximise the number of nodes receiving broadcast messages initiated from
randomly selected nodes while minimising the number of messages sent.

Entity Peer node - a node in a peer-to-peer overlay network. Each node stores a
neighbor list (or view) and a forwarding strategy (either PASS or DROP).
Periodically nodes may randomly change their strategy or copy it from other
nodes, but they do not change their neighbor list.

Group All nodes reachable via a broadcast from a given node represents the the
group membership of that node.

Interaction Interaction involves initiating broadcast messages. Receiving messages
from neighbors. Passing (or not) received messages to neighbours based
on the strategy (either PASS or DROP) held by the node.

Utility Benefit (B) received upon message reception minus cost (C) due to possible
message forwarding. B > C > 0. Hence nodes have an incentive to receive
messages but no incentive to pass them on.

Migration No direct migration (no rewiring in the network). Groups are defined by
nodes receiving or not receiving messages and depends on strategy dis-
tribution among nodes. By changing a strategies nodes migrate between
broadcast groups.

Fig. 16. Key aspects for the Broadcast model.

The optimal broadcasting possibility in terms of messages sent, is for the mes-
sage to follow a spanning tree in which each node only passes the message to those
neighbors that have not already received the message. This approach requires only N
messages (where N is the total number of nodes in the network).

We consider a different approach from the two limit cases above, in which nodes
dynamically decide if to pass messages to their neighbors based on a simple adaptive
evolutionary protocol in which there are incentives for nodes to not pass on messages.

Using simulations we found that this approach, though motivated by self-interest
in the nodes, produced reasonable broadcasting performance with a total message cost
significantly less than that required for the FF approach. Interestingly, we found that
our simple protocol appears to evolve the network towards a critical threshold of PASS
nodes and this could be related to site percolation theory.

The results presented here are an overview of work given in a previous paper from
which more details can be obtained [1].



7.1 Interaction

We formulated the model in the form of a broadcast game in which nodes were
awarded a payoff (or utility) based on the outcome of each broadcast event. A broadcast
event involves randomly choosing a node from which a broadcast message is initiated.
The node passes a message to each of its neighbours. In the next time-step each neigh-
bour then decides if to pass the message to its own neighbors based on its current
strategy (either PASS or DROP). This process continues until no more messages can
be sent. We assume that nodes wish to receive broadcast messages (they contain use-
ful information) but that nodes have some incentive not to pass messages on (due to a
bandwidth or power cost). Hence we assume there is a benefit for receiving a message
(B) and some cost for sending a message (C). We assume that B > C > 0 meaning a
node receiving and passing a message receives positive benefit. After a broadcast event
each node in the network will either receive a utility award of B, if it received but did
not pass the message or B−C if it received and passed the message or zero if it did not
receive the message at all.

7.2 Migration

Migration between groups is not explicitly defined (i.e. there is no network rewiring)
since only strategies are copied. The network structure itself does not change through
evolution. According to the strategy distribution the network is composed of groups in
the sense of connected clusters of nodes holding the PASS strategy. That is, every node
i is a member of a group defined by the set of all reachable nodes S from node i via a
broadcast. A group boundary is thus formed by a region of the network being bounded
by nodes holding the DROP strategy - stopping any message originating inside the
group from passing to other groups. Through utility comparison and strategy copying
a group selection process is achieved at the level of quantity of PASS nodes in a group.
Groups of nodes not receiving messages have zero utility. Hence it will copy any other
nodes strategy if it received a message. This means the proportion of PASS nodes
in groups receiving messages will tend to be reproduced by strategy copying. Such
proportions of PASS nodes will tend toward the critical value at which groups form
because by definition a group exists if it is above this critical threshold. On the other
hand a node within a group receiving a message has an incentive to switch from a
PASS to a DROP strategy - lowering the proportion PASS nodes in such groups. This
ultimately will cause the creation of new groups not receiving messages when the
PASS value falls below the critical value. Hence we see cyclical oscillations around
the critical value.

7.3 Simulation algorithm

We implemented the broadcast model in the PeerSim platform [30]. Figure 17 shows
the pseudo-code for the one active and two passive threads that form the protocol. For
the simulations discussed here we selected one node randomly to initiate a broadcast
message every 20 cycles. Messages were given a TTL value of 5. A cycle was equiv-
alent to the time it took to send a message one hop in the network. Nodes maintained



input buffers to store incoming messages. The results given here are for static ran-
dom networks but similar results were obtained when high levels of node churn (nodes
entering and leaving the network) were incorporated. For full details see [1].

Active “replication” thread for node (i):

Periodically do
j ! selectRandomNode()

IF Utilityj > Utilityi THEN
Strategy ! Strategy

With probability m change Strategy
Utilityi ! 0

END IF

Passive “initiate broadcast” thread for node (i):

When requested to broadcast message (msg) do
LOOP for each neighbour node (j) in view

Send(j, msg)
END LOOP

Passive “receive message” thread for node (i):

When receive message (msg) from neighbour (k) do
IF new unseen message THEN

Increment Utilityi by B (benefit)
IF (Strategyi == PASS) and (TTL of msg > 0) THEN

Decrement TTL of msg
Decrement Utilityi by C (cost)
LOOP for each neighbour node (j) in view except (k)

Send(j, msg)
END LOOP

END IF
END IF

Fig. 17. Pseudo-code for the Broadcast protocol comprising one active and two passive threads. The topology was
initialised to a random network with degree 20. All links between nodes were symmetric.

7.4 Results

We tested the broadcast game on a random network topology of degree 20 where all
links were symmetric. The system shows an interesting behaviour. A typical run of
the algorithm is shown in Figure 18. In this experiment a single message is generated
every 20 simulation cycles and spread starting from a randomly chosen node, while in
each cycle each node compares its utility with a random node with 20% probability.

We initialised all nodes with the PASS strategy (NP=1). Hence at the start of the
run flood fill is performed and there are a lot of redundant messages. If some node stops
passing messages it gets a higher utility and gets copied, so initially a dramatic drop
in NP occurs as nodes discover how to get higher utility by not passing the message.
Eventually too many nodes will adopt the DROP strategy and the message will fail to
be spread throughout the network. At this stage the network is divided into a groups
receiving messages and groups not receiving anything. Nodes in non receiving groups
will tend to reproduce the NP value of the receiving cluster and will eventually be able



NP

NR

Fig. 18. A single run of broadcast game. The solid line (NP) represents the ratio of nodes with PASS strategy, while
each dot (NR) represents a message and the quantity of nodes that received it. Initially NP drops dramatically but
it meta-stabilises at a critical threshold below which messages are not spread and above which messages become
redundant.

to receive messages again. Hence a group-like selection is created between clusters re-
ceiving messages and clusters not receiving anything, and the strategies are distributed
oscillating around a critical value above which there are redundant messages and below
which messages can not be spread throughout the network.

These dynamics are very complex and subtle, we only hinted at them here. For a
fuller discussion see [1].

8 Content replication

Nodes in a network often store and serve content to other nodes. However, each has a
finite capacity and if requests for content exceed the capacity then queries fail. It is gen-
erally not possible for a priori predictions of load demand because at given times some
content may suddenly become popular and at others hardly requested at all. Hence over
a given time period a population of nodes has a certain total capacity to serve requests
(the sum of all individual node capacities) and some demand load (queries going to
the nodes). Assuming nodes can replicate content and redirect queries we present a
simple node level protocol that self-organises nodes into cooperative clusters leading
to efficient outcomes in some simple scenarios. CacheWorld is a simulation model
that applies to group selection pattern to this replication sceanrio. The key aspects are
shown in figure 19. This section is an overview previous work where further details
can be found [11].

8.1 Interaction

We assume a population of N server nodes which form a P2P overlay network. In
addition to being part of the overlay, each node functions as a server responding to
requests (queries) from clients outside of the overlay. An example could be that each



Collective Goal Maximise the total number of queries served by harnessing unused capacity
in underloaded nodes.

Entity Peer node - a node in a peer-to-peer overlay network with the ability to
receive and serve queries, for a content item, from clients external to the
overlay network. Each node has a maximum capaciy limiting number of
queries serviceable over a time period. Each node can be thought of as a
web server, for example, and stores is own content item and a replicated
copy of each of its neighbours content items.

Group The neighbour list (or view) of a node defines its group
Interaction Receiving redirected queries from overloaded nodes or conversely redirect-

ing queries to a random neighbour when overloaded. When a node makes
a connection to a new neighbour both nodes mutually replicated their con-
tents.

Utility A simple binary satisfaction function: if all queries received by a node are
eventually served then the node is satisfied otherwise it is unsatisfied.

Migration Periodically, unsatisfied nodes move randomly in the network. But a node
will only accept an incoming connection from a moving node if it is in a
receptive state. A node is only receptive if it has spare capacity or is itself
unsatisfied.

Fig. 19. Key aspects for the CacheWorld model.

node is a web server with the overlay linking the servers and clients being web browsers
on user machines. Servers store a copy of their own content item (e.g. a website) and
have additional storage for k replicated items from other servers. The overlay links
servers bidirectionally if they mutually replicate content. In our website example this
would mean two linked servers hold a copy of the others’ site. We also assume servers
have access to three services: a replication service that copies items between servers; a
peer sampling service that supplies a random server from the overlay; a content server
that serves or redirects queries as required.

Over a given time period nodes receive queries (load) from clients to serve their
content item. Each node has a fixed capacity, C, specifying the total queries it can
serve in the given time period. If the load exceeds capacity then the nodes is said to
be “overloaded”. Overloaded nodes redirect queries to randomly selected neighbors.
If a neighbor is not itself overloaded it will serve the query from its local content
replica (or cache), otherwise it will ignore the query. The essential idea therefore is that
overloaded nodes will have neighbors that are not overloaded and can serve queries.

8.2 Migration

Each node maintains an estimate of the proportion of queries for its own content that
were actually served (ps). A node is said to be satisfied when ps ≥ t, where t is some
threshold value. Here we set t = 1 for all nodes, meaning nodes are only satisfied if
100% of their queries are served. Periodically nodes attempt to change their neighbors
(move) in the overlay network if they are not satisfied. When a node i moves, it drops
all its current links and selects a random node, j, from the population. i then attempts to
link to j. The link is accepted if j is in a receptive state. A node is defined as receptive
if it is currently not satisfied or if it has spare capacity which is unused. This captures
the notion that a node only wants new connections if it is either not satisfied or if it has
spare capacity to offer. If a receptive node accepts an incoming link but already has the



maximum k links then it drops a randomly selected old link to make space for the new
link.

8.3 Simulation algorithm

We implemented the CacheWorld model in the PeerSim platform [30]. Figure 20 shows
the pseudo-code for the active and passive threads that form the protocol. The passive
thread is activated when a node receives a query, the active thread is activated periodi-
cally. For the simulations discussed here we selected a simple loading scenario on the
nodes in which half the nodes were overloaded and half were underloaded such that
an optimal network structure exists in which all queries could be answered. Details of
this and other load scenarios can be found in [11].

Active “node movement” thread for node:

Periodically do
IF not satisfied

drop all neighbour links
j ! selectRandomNode()

IF j is receptive then link to j
END IF

Passive “receive query” thread for node:

When receiving a query (q) do
IF not overloaded, service q directly
ELSE IF neighbours > 0 and q is not already a redirected query

j ! selectRandomNeighbour()

redirect q to j
END IF

Fig. 20. Pseudo-code for the CacheWorld protocol. It comprises one active and one passive thread. These were
simulated within the PeerSim environment. Notice that only one hop of query redirection is allowed.

8.4 Results

Figure 21 shows results from three different experiments (isolated, random and dy-
namic) for the simple half overloaded / half underloaded scenario. Here we show the
simplest case where number of replicas k = 1, meaning that nodes essentially form
pairs rather than complex network structures. The Isolated experiments gives a perfor-
mance baseline by running the simulation with all CacheWorld services turned-off: no
links between nodes, no query redirection and no movement. This captures the situa-
tion where nodes simply answer their own queries and do not know about other nodes.
The Random experiments give a secondary baseline. Here the overlay is initialized to
a random topology (degree k) that is fixed - i.e. no node movement is possible. How-
ever, nodes my redirect their queries to neighbors if they become overloaded. In the
Dynamic experiments the CacheWorld protocol is fully enabled allowing for dynamic
node movement based on satisfaction, as previously described. By comparing Random
and Dynamic experiments we can determine how much extra performance the dynamic



movement produces over just a fixed random overlay. By comparing Isolated and Dy-
namic experiments we can determine the overall increase in performance obtained by
using CacheWorld over letting servers deal with all their own queries individually.
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Fig. 21. Results from the Content Replication model. Isolated shows performance when the protocol is tuned off.
Random shows the performance when there is no node movement. Dynamic shows results when the protocol is
fully enabled. Q = proportion of queries answered, S = proportion of nodes satisfied.

9 Conclusions

We have given an overview of some existing application models that have been inspired
by group selection approaches. We identified some key aspects that define such models
and expressed them in a standard template. However, there are still open issues before
we can present our approach as a design pattern in a principled way. Firstly, all the
applications so far discussed have only been tested at the level of simulation in which
many potentially significant effects are not modelled. For example, we have not tested
the systems against several kinds of malicious attacks. Also there is an assumption
in many of the models that nodes will, at some level, supply valid information (for
example for utility comparison or link exchanges) and malicious nodes may not do
this - we have addressed some of these issues in previous studies [2, 18] but there is
more work to do here. We believe that to produce a credible design pattern we need to
report on experience with deployed and tested implementations. We feel that the work
presented here moves us closer to that possibility but, again, there is work to do.

The group selection approach may be just that: a design approach rather than a
design pattern. Our experience has been that, given a co-ordination problem in a dis-
tributed system, the group selection approach is more like a general methodology than
a solution. Rather like functional decomposition within structured programming, or in-
heritance hierarchies in object orientated design, the approach requires one to identify
what might be the natural structures of the interactions within the system - i.e. you have
to answer the questions: Where are the groups here? What are the strategies or relevant
individual behaviour choices? How can migration occur? What is the collective goal?



What are the individual goals? Producing answers to those questions is not easy and
often requires experimentation. Yet if crisp definitions can be found for each of these
aspects then the group selection process is relatively straightforward to apply.

The key point is that by answering these questions one is forced to think about the
runtime distributed social dynamics of a system at a level of abstraction much higher
than specific implementation issues, static structures or purely individual properties.
By doing this one is forced to think socially and is freed from the need to design
centralised structures to impose the collective goal.

If group selection in distributed information systems can be developed as a gen-
eral design methodology then perhaps this could have a wide general impact in the
emerging are of socially intelligent systems design.
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