
Project Number 001907

DELIS
Dynamically Evolving, Large-scale Information Systems

Integrated Project

Member of the FET Proactive Initiative Complex Systems

Deliverable D5.4.1

Application of Motif Analysis to
Artificial Evolving Networks

Start date of the project: January 2004

Duration: 48 months

Project Coordinator: Prof. Dr. math. Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute, University of Paderborn, Germany

Due date of deliverable: December 2005

Actual submission date: January 2006

Dissemination level: PU – public

Work Package 5.4: Multi-Scale Topology Evolution in Natural and Artificial Networks

Participants: Universtitat Pompeu Fabra (UPF), Barcelona, Spain
Universita di Bologna (UniBO), Italy
Telenor R&D (Telenor), Norway

Authors of deliverable: Sergi Valverde (svalverde@imim.es)
Ricard V. Solé (ricard.sole@upf.edu)
David Hales (hales@cs.unibo.it)
Ozalp Babaoglu (babaoglu@cs.unibo.it)
Stefano Arteconi (arteconi@cs.unibo.it)
Geoffrey Canright (geoffrey.canright@telenor.com)

Abstract

This report comprises the complete D5.4.1 deliverable as specified for workpackage WP5.4 in Subpro-
ject SP5 of the DELIS (Dynamically Evolving Large-scale Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, engineer and control large
evolving information systems. In this workpackage we wish to tie together, hitherto, independent
research lines on evolving network “form” and “function”. Both in naturally found networks (e.g.,
biological and software networks) and artificial networks (e.g., dynamic peer-to-peer networks) there
appear to be various levels of selection and evolution and interesting relationships between form and
function. It is becoming increasingly clear that form does not follow directly from function (or vice
versa) in many observed evolving networks. What then is the relationship and how can it be detected
and characterised?

We summarise two main lines of work, the first section covers detailed analysis of motifs and
structures in software graphs based on class relationships. Here predictive analytical models have
been extracted from empirical analysis of code. In addition to giving deep insights into the nature of
software evolution at the code-programmer level, these models offer the possibility of predicting or
sensing automatically if a particular code-base could need re-factoring without knowing the specifics,
semantics, or function of the code itself - hence offering the possibility of generic tools.

The second part details some initial motif analysis of peer-to-peer protocols based on evolutionary
algorithms that support cooperation between selfish adaptive nodes in a network. We were surprised
to find the motif profiles match closely protein structure networks. Additionally we gained interesting
and potentially very useful insights on the relationship between form and function in such networks.
Similarly, we found that it may be possible, automatically, to detect if a peer-to-peer network is mal-
functioning or under malicious attack without knowing the specifics of the application level function.
Again, these results point to the possibility of highly generic and useful tools1.

1Most papers produced within DELIS are available from the DELIS website as DELIS Technical Reports. Where this
is the case references are appended with the DELIS Tech Report number in square brackets. This indicates the
paper was produced within the DELIS project, not some other project.

1

Contents

1 Motif Evolution in Software Development 3
1.1 Introduction . 3
1.2 Software Evolution . 3
1.3 Summary . 7

2 Motifs and Anti-motifs in Evolving Peer-to-Peer Networks 7
2.1 Introduction . 7
2.2 Mofits and Anti-motifs . 9
2.3 Subgraph Ratio Profiles . 9
2.4 Analysing SLAC and SLACER P2P Networks . 12
2.5 Summary . 14

3 Conclusion 15

2

1 Motif Evolution in Software Development

1.1 Introduction

How do Scale-Free (SF) nets originate? There are a number of well-identified processes leading to SF
structure. Most of them rely in a growing network displaying some rules of preferential attachment
of new nodes. However, it has been suggested that a sparse SF network can actually result from an
underlying optimization process in which efficient communication at low cost is involved [19]. But
the most interesting implications from SF architecture are related to their high robustness against
random node failure, together with a high level of fragility when hubs fail. In other words, information
transfer keeps working in an efficient way when a randomly chosen node fails but typically degrades
when a highly connected component fails. Such observation has been shown to have immediate
implications for reliable network architecture. Since systems sensitivity to component failure is a
fundamental problem in any area of engineering, it is important to recognize how network topology
will influence systems performance.

An example of such type of distribution is found in the large-scale architecture of any C++
software system (see fig.1 and fig. 2A), where the hubs (i.e., classes participating in many different
relationships) can be appreciated, together with a large number of elements having a single connection
[19]. Such scale-free graphs are the result of multiplicative processes. An example is the so called
preferential attachment rule [1]. But heterogeneous architectures can also be a consequence of a
pressure towards achieving good communication at a low cost. What is more important in our
context: rules of tinkering, such as duplication of existing nodes plus rewiring, are able to generate
such heterogeneous graphs. These rules are known to be operating in biological evolution, and the
emergence of the protein interaction network seems to provide a clever example ([15]; [13]). It is less
clear that such type of evolutionary rules apply in software development.

A careful analysis of network motifs (see fig. 1C) in real software maps [17] has shown that this is
actually the case. Although engineers are building a system with a predefined purpose, they make
extensive use of copy-and-paste. The modular architecture of many parts of a large program, and
in particular the organization into classes makes easy to reuse pre-existing pieces that already have
a desired set of properties, followed by a convenient set of modifications. It has been shown that,
looking at both large-scale and small-scale features (such as network motifs) it is not difficult to
explain the most relevant features of software graphs by means of an extremely simple model of
duplication and rewiring process. Actually, available data from software development seems to be
consistent with a simple, multiplicative process of network evolution. Such class of growth has been
dubbed growing network with copying (GNC). In this framework ([9]) the network grows through a
blind process of duplication and rewiring.

1.2 Software Evolution

In the GNC model, the network grows by introducing a single node at a time. This new node links
to m randomly selected target node(s) with probability p as well to all ancestor nodes of each target,
with probability q. The discrete dynamics follows a rate equation:

L(N + 1) = L(N) +
m

N

〈∑
µ

(p + qjµ)

〉
(1)

where L and N are the number of links and nodes, respectively. The second term in the right-hand
side describes the copying process, where the average number of links added is given byp+ qjµ . The
µ index refers to the node µ, to be selected uniformly from among the N elements. Assuming a
continuum approximation, the number of links is driven by the following differential equation:

3

Figure 1: (A) An example of design pattern described in standard UML notation is compared with
(B) its corresponding software network. The observer pattern is commonly used to maintain
consistency between related objects (i.e., Subject and Observer) and it is fully described in
[3]. The bare-bones structure of this pattern is described by the little square subgraph in
the right. Graph nodes and directed links represent classes and collaborations, respectively.
(C) Some of the most common motifs found in software networks. We can use the degree
distribution P (k) to predict the abundances of software motifs.

4

10
0

10
1

10
2

k

10
-3

10
-2

10
-1

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

γ c

i
= 0.97

B A

Figure 2: (A) Largest connected component of the XFree86 project at 15/05/1994 (with N = 393)
displays scale-free behavior. In (B), the cumulative distributions Pi>(k) and Po>(k) are
shown for a more recent version of XFree86 with N = 1299 (not shown here). The power-
law fit of the in-degree distribution (black dots) yields Pi(k) ∼ k−γc

i−1 with γc
i = 0.97±0.01

while the out-degree distribution is exponential (white squares).

dL

dN
= mp + mq

L

N
(2)

The asymptotic growth of the average total number of links depends on the extent of copying
defined by the product mq. In particular, logarithmic growth is recovered when mq=1 and L(N) =
mpN logN . This corresponds to a marginal situation separating a domain of linear growth (mq<1)
to a domain of exponential growth (2>mq>1). Interestingly, for mq=1 the GNC model predicts a
power-law in-degree distribution Pi(k) ≈ k−γi with exponent γi= 2 and an exponential out-degree
distribution Po(k), independently of copying parameters m, p and q.When looking at the time dy-
namics of software development, we found that they exhibit the patterns predicted by GNC scenarios,
close to the mq=1 regime. They include the sparseness, the asymmetries found in the in- and out-
degree distributions (see fig. 2B), the small worldness and the time dependent logarithmic growth
(see fig. 3A). Indeed, the sparseness seen in software maps is likely to result from a compromise
between having enough dependencies to provide diversity and complexity (which require more links)
and evolvability and flexibility (requiring less connections). Here we have uneven, but detailed infor-
mation of the process of software building. In this context, different software projects developments
display specific patterns of growth.

Specifically, the number of nodes N grows with time following a case-dependent functional form
N = Φ(t). Using dL/dt = (dL/dN)(dΦ/dt) we have:

dL

dN
=

[
mp + mq

L

Φ(t)

]
.
Φ−1 (3)

with a general solution

L(t) = emq
R

(Φ
.
Φ)−1dt

[
mp

∫
e−mq

R
(Φ

.
Φ)−1dt

.
Φ−1dt + Γ

]
(4)

5

0 2!10
4

4!10
4

6!10
4

8!10
4

1!10
5

Time (hours)

1000

2000

3000

4000

5000

6000
N

(t
),

 L
(t

)

0 5!10
4

1!10
5

Time (hours)

10
3

10
4

10
5

C
u
m

u
la

ti
v
e
 k

(t
)

10
4

10
5

10
4

10
5

A B

C

t1 2t

Figure 3: (A) The top curve shows the comparison between the time evolution of L(t) in XFree86
between 16/05/1994 and 01/06/2005 (points) and the GNC prediction (dashed line) as-
suming logarithmic growth (mq=1). We also assume that system size N(t) = N0 + at
evolves linearly in time (see bottom curve). We observe an anomalous growth pattern fol-
lowed by a discontinuity (here indicated as t1 and t2). Notice how t2 signals a discontinuity
both in L(t) and N(t), while discontinuity t1 only takes place in L(t). (B) Comparison
between time evolution of the cumulative average degree in XFree86 during the same time
period as in (A) and the analytic prediction. (C) The inset shows the same data as in
(B) but in a double logarithmic plot. The fitting parameters are: N0 = 622.17 ± 10.92,
a = 0.0086 ± 0.0002, L0 = 1419.8 ± 4.1, and mp = 2.20± 0.01. Time is measured in hours.

where Γ is a constant. Using a linear law growth (which is not uncommon in software development),
i.e. N(t) = N0 + at, and assuming mq=1, we have:

L(t) = (N0 + at)

[
mp log

(
N0 + at

N0

)
+

L0

N0

]
(5)

Our analysis of available data sets of software development (see fig. 3) support this scenario ([8]).
This agreement suggests that, beyond the specific details of the development process and (what is
more unexpected) the specific performed function, topological patterns emerge from the constraints
imposed by the rules of software growth. In this context, the studies presented here indicate that
function is adapted to the emerging architecture through the process, instead of being responsible
for the final pattern.

In addition, the previous model provides further validation of our prediction for the number of
appearances of a particular motif in any software network ([7]). Given a particular motif with n
nodes, g edges and maximum in-degree s, the following expression gives the average number < G >
of motif instances found in a software network with N nodes:

〈G〉 ≈ Nn−g+s−γi+1 (6)

Using a set of 83 software systems we have estimated a scaling exponent γi ≈ 2.09 ± 0.06 for the
in-degree distribution. Notice how this estimation is in remarkable agreement with the prediction of
the GNC model.

1.3 Summary

Previous studies indicate that network motifs act like fingerprints of development processes. In this
context, our recent analysis of software motifs has shown that both motif abundances and heteroge-

6

Figure 3: (A) The top curve shows the comparison between the time evolution of L(t) in XFree86
between 16/05/1994 and 01/06/2005 (points) and the GNC prediction (dashed line) as-
suming logarithmic growth (mq=1). We also assume that system size N(t) = N0 + at
evolves linearly in time (see bottom curve). We observe an anomalous growth pattern fol-
lowed by a discontinuity (here indicated as t1 and t2). Notice how t2 signals a discontinuity
both in L(t) and N(t), while discontinuity t1 only takes place in L(t). (B) Comparison
between time evolution of the cumulative average degree in XFree86 during the same time
period as in (A) and the analytic prediction. (C) The inset shows the same data as in
(B) but in a double logarithmic plot. The fitting parameters are: N0 = 622.17 ± 10.92,
a = 0.0086± 0.0002, L0 = 1419.8± 4.1, and mp = 2.20± 0.01. Time is measured in hours.

where Γ is a constant. Using a linear law growth (which is not uncommon in software development),
i.e. N(t) = N0 + at, and assuming mq=1, we have:

L(t) = (N0 + at)
[
mp log

(
N0 + at

N0

)
+

L0

N0

]
(5)

Our analysis of available data sets of software development (see fig. 3) support this scenario ([18]).
This agreement suggests that, beyond the specific details of the development process and (what is
more unexpected) the specific performed function, topological patterns emerge from the constraints
imposed by the rules of software growth. In this context, the studies presented here indicate that
function is adapted to the emerging architecture through the process, instead of being responsible
for the final pattern.

In addition, the previous model provides further validation of our prediction for the number of
appearances of a particular motif in any software network ([17]). Given a particular motif with n
nodes, g edges and maximum in-degree s, the following expression gives the average number < G >
of motif instances found in a software network with N nodes:

〈G〉 ≈ Nn−g+s−γi+1 (6)

Using a set of 83 software systems we have estimated a scaling exponent γi ≈ 2.09 ± 0.06 for the
in-degree distribution. Notice how this estimation is in remarkable agreement with the prediction of
the GNC model.

6

1.3 Summary

Previous studies indicate that network motifs act like fingerprints of development processes. In this
context, our recent analysis of software motifs has shown that both motif abundances and heteroge-
neous software topology are the consequence of simple tinkering rules of software development. Then,
we do not require the assumption of conscious and optimal design in order to explain the scale-free
behavior of software. Inspired by the above findings, we have successfully modeled the evolution of
software architecture. The scale-free invariant observed in software systems enabled us to predict the
growth of software systems, where the number of links is constrained to follow a logarithmic trend.
This simple model also explains the typical in-degree and out-degree asymmetry observed in real
software architectures. In addition, deviations from the logarithmic trend might anticipate costly
design changes (i.e., refactorings).

2 Motifs and Anti-motifs in Evolving Peer-to-Peer Networks

2.1 Introduction

From an engineering point of view, our aim is to produce distributed systems with many of the
desirable properties of living systems (as discussed in detail in D5.1.1). These properties include,
robustness yet adaptability, scalability, self-healing and self-management. We have developed a
number of distributed Peer-to-Peer (P2P) protocols, based on a a socially inspired evolutionary
algorithm, that display, at least some, of these characteristics.

In a previous deliverable (D5.2.1) we discussed how we translated the evolutionary algorithm,
based on social tags [14], into a copy and re-wire P2P protocol that promoted cooperation between
connected nodes even when they had incentives to behave selfishly. We also discussed how the protocol
structures the population into competing ‘tribes’ that, through a group-like selection process, lead
to socially beneficial behaviour even when the individual nodes behave in an essentially selfish way
- following a local greedy optimisation algorithm.

We tested the protocol by having nodes play the Prisoner’s Dilemma game - a canonical game
for exploring situations in which collective interests and individual interests diverge. We called this
protocol SLAC (Selfish Link Adaptation for Cooperation) and applied it to a simulated file-sharing
scenario demonstrating it had the ability to control the outbreak of selfish behaviour by nodes
(downloading without uploading - so called “leeching”) [6].

Intriguingly, we noticed that the copy and re-wire rules used in the protocol were very similar to
the kinds copy and re-wire algorithms found to produce networks with similar structural properties
to those found in software graphs [18]. Hence human constructed software graphs appear to follow a
copy and re-wire process at some level (as discussed in the previous sections).

Although the SLAC algorithm performs well for certain task domains it results in networks with
many disconnected components. Certain kinds of task require fully connected networks, for example
a broadcast task that requires a single node to send a message to all nodes in the network, collective
spam filtering [8] or improving distributed hash table (DHT) performance [10].

In order to address this limitation of SLAC we modified the protocol such that the copying and re-
wiring of links follows a probabilistic rule. In this way there is a probability that old links are retained
when nodes re-wire (move) within the network. We called this new protocol SLACER (Selfish Link
Adaptation Excluding Rewiring) [5].

Figure 4 shows the pseudocode outline of the active thread of the SLACER protocol2. Each node
periodically selects another node from the network at random and copies it’s links and strategy if it
has a utility that is equal to or higher than it’s own. A strategy is some application level behaviour

2Since we have covered this algorithm in detail in a previous deliverable (D5.2.1) and elsewhere [6] we do not go into
detail here since we wish to focus on the motif analysis of the produced networks.

7

Active thread: Passive thread:

i ! this node

do forever:

Engage in application task

update i.Utility

Periodically (compare utility):

j ! GetRandomNode()

j.GetState(i)

if i.Utility " j.Utility

CopyStatePartial(j)

Mutate(i)

Utility ! 0.0 (reset utility)

j ! this node

do forever:

sleep until a request received

GetState(i) – send j state to node i:

Send j.Utility to i

Send j.Links to i

Send j.Strategy to i

Function CopyStatePartial(j): Function Mutate(i):

i.Strategy ! j.Strategy

drop each link from i with prob. W

for each link in j.Links:

i.addLink(link)

with prob. M mutate i.Strategy

with prob. MR mutate i.Links:

drop each link with prob. W

i.addLink(SelectRandomNode())

Periodically, each node (i) compares its performance against another node (j), randomly

selected from the population. If Ui " Uj then node i drops each of its current links to

other nodes with high probability W, and copies all node j links and adds a link to j itself.

Additionally i then copies j’s strategy – the strategy represents some behaviour that nodes

execute during application level interaction. After such a copy operation has occurred,

then, with low probability M, node i adapts its strategy and with probability MR adapts its

links. Adaptation involves the application of a “mutation” operation. Mutation of the

links involves removing each existing link with probability W and adding a single link to

a node randomly drawn from the network. Mutation of the strategy involves applying

some form of change in application behavior with probability M - the specifics of strategy

mutation are dictated by the application domain (see later). After the periodic utility

comparison, whether this resulted in the copying of another node or not, the node resets

its utility to zero - hence, utilities do not accumulate indefinitely.

Each node is limited to a maximum number of links or neighbors (its so-called view

size). If any SLACER operation causes a node to require an additional neighbor above

this limit then a randomly selected existing link is removed to make space for the new

link. Links are always undirected and symmetrical, so that if node i links to node j, then j

must also maintain a link to node i and conversely if node i breaks a link to node j then

node j also breaks its link to node i. For implementation purposes, SLACER requires

additional passive thread functions (not shown in figure 1) that would handle “addLink

and dropLink” requests from other nodes.

Figure 4: The SLACER protocol pseudocode. Note that when W=1 SLACER collapses into the
SLAC protocol. For an overview of the protocol see the text but for more detail see [5, 4].

or algorithm and utility is some application level indication of nodes individual performance. For
example, in a file-sharing scenario the strategy might be the amount of bandwidth to devote to
servicing other nodes requests and the utility might be the download rate for the individual node.

With low probability, after copying another node, the copied links and strategy are mutated -
changed in some randomised way. Mutation on the links involves dropping each one with high utility
(W) and then adding a link to a randomly chosen node form the network. Again mutation operations
on the strategy would be application specific, for example, for a file-sharing application the amount
of bandwidth used to service other nodes requests would be changed randomly.

When the link drop probability W=1 (see figure 4) then SLACER collapses to the previous SLAC
protocol producing highly cooperative yet disconnected networks. However, when W is slightly
reduced, SLACER produces networks in which almost all nodes are members of a giant connected
component in which all neighbours are cooperative. Further, we found that almost all pairs of nodes
can find cooporative routes linking them (i.e. routes that pass through only cooperative nodes) - an
important property for addressing the limitations of the SLAC.

Interestingly, SLACER produced networks that were small-world like, with a low average path
length between nodes and a high clustering coefficient. It also retained the desirable file-like properties
of scalability, adaptability and robustness - meaning that if nodes are removed or links broken the
network quickly readjusts back into a cooperative state.

Although we have analysed some of the global properties of SLACER networks and how they
evolve (such as average path length and clustering coefficient) we have not yet considered motif level
analysis in which the frequency of subgraph structures within the networks is considered. This kind
of analysis is of value since it allows us to compare the structure of the produced networks with other
networks as well as characterise the evolution over time of the of the SLACER networks themselves.

In the next section we briefly introduce the notion of network motifs and in the following sections
we show the results obtained from the analysis of some SLAC and SLACER P2P networks. We also

8

compare those results with previous analysis of naturally occurring and engineered networks. We
were rather intrigued by our results which showed a strong resemblance between the P2P networks
and certain naturally occurring protein structures.

2.2 Mofits and Anti-motifs

Networks are often characterised using average global measures, such as average path length and
clustering coefficient. Although valuable such measures rarely give a picture of the detailed structure
of the networks. This means that networks with different topologies can have identical global average
measurements. Hence, in order to further understand and classify natural and artificial networks new
methods have been proposed.

Recently, researchers working with complex networks (both natural and artificial) have begun
to analyse and characterise them using more sophisticated topological techniques and one of these
approaches is so called “motif analysis” [11].

By breaking the network down into all possible n node subgraph patterns and counting them it is
possible to compare those counts against randomly generated networks with the same characteristics
(number of nodes and in / out degree links). Then, where certain n node subgraph patterns are
significally more prevelant than in the random case, these are considered mofits of the network.
Additionally, although less discussed in the literature, n node subgraph patterns that are under-
represented in the network have been termed anti-motifs [12] and are of equal value in characterising
network structure.

Obviously, for large subgraph sizes the number of possible motifs becomes large but for smaller
sizes (3 and 4 nodes) it is possible computationally to search, even large, networks for all occurrences
efficiently. Figure 5 shows all possible three node subgraphs for directed graphs. Note, that for
non-directed three node subgraphs there would be only two possible subgraphs (shown as id78 and
id238 in figure 5).

2.3 Subgraph Ratio Profiles

The P2P networks produced by SLAC and SLACER are undirected in the sense that all links are
bidirectional. So for the purposes of analysis we search for all undirected four node subgraphs
(tetrads). Figure 6 shows the six possible undirected tetrads.

In order to analyse the P2P networks we used a subgraph ratio profile (SRP) method [12]. This
approach is particularly useful for analysis of the P2P networks since traditional motif analysis meth-
ods using z-scores are not network size invariant for non-directed tetrads and this makes comparison
with networks of different sizes difficult.

For a given network N the SRP is a normalised vector of ∆i values:

SRPi =
∆i√∑
i

∆2
i

(7)

The vector elements, one for each of the six tetrads, are calculated based on the abundance of each
tetrad i relative to randomly generated networks, To avoid large values as an artefact of very small
occurrences of tetrads in both the real and random networks the value ε = 4 is added to the the
denominator.:

∆i =
Nreali− < Nrandi >

Nreali+ < Nrandi > +ε
(8)

A given SRP can be graphed producing a curve which characterises the tetrad motifs and anti-
motifs visually. Figure 7 (taken from [12]) shows the SRP curves of a number of natural and engi-
neered networks grouped into similar so-called “superfamlies”.

9

3-node subgraphs

id6 id12 id14 id36

id38 id46 id74 id78

id98 id102 id108 id110

id238

1

Figure 5: All thirteen possible three node directed subgraphs (taken from [20]). The id is obtained by
representing the subgraph as an adjacency matrix structured as a binary integer extracted
by concatenation of the rows of the matrix. In this way any size of subgraph can be given
a unique id which specifies the structure completely.

1 3

4 5 6

2

Figure 6: All six possible four node undirected subgraphs (tetrads). Nodes are not shown but should
be assumed at the end of each line. The adjacency matrix derived id’s are not shown but
the tetrads are ordered by ascending value of them.

10

ality. Because nondirected networks have
only two types of triads (V and triangle), we
analyzed the profile of the six types of non-
directed connected tetrads (four-node sub-
graphs). Unlike triads, the normalized Z
scores of tetrads show a significant depen-
dence on the network size. Therefore, instead
of an SP based on Z scores, we use the
abundance of each subgraph i relative to ran-
dom networks:

!i "
Nreali # <Nrandi>

Nreali $ <Nrandi> $!

where ! ensures that !!! is not misleadingly
large when the subgraph appears very few
times in both the real and random networks
(here ! " 4). The subgraph ratio profile (SRP)
is the vector of !i normalized to length 1:

SRPi"!i/(%!i
2)1/2

A nondirected network representing the elec-
trical power grid of the western United States
(4) showed an SRP with overrepresentation
of tetrads 3 to 6 (Fig. 3). Nondirected net-
works of protein structure in which nodes are
secondary-structure elements (& helices and
' strands) and two nodes are connected if
their distance is smaller than 10 Å have sim-
ilar SRPs with overrepresented tetrads 3, 5,
and 6. We compared these networks to model
networks in which connections are deter-

mined on a lattice by geometrical proximity.
In these geometrically constrained networks,
the nodes are arrayed on a lattice (a line in
one dimension, a plane in two dimensions,
etc). Points that are closer than a distance R
on the lattice are linked by an edge with
probability p. Points at a distance greater than
R are unlinked. The resulting subgraph dis-
tributions of these networks and their corre-
sponding randomized versions can be analyt-
ically calculated. We find good agreement
between the real-world protein structure and
power-grid SRPs and the corresponding geo-
metrical models with a similar number of
nodes, edges, and clustering coefficient (Fig. 3).

A distinct family of SRPs was found for the
Internet at the level of nondirected connections
between autonomous systems (AS, which are
groups of computers within which networking
is handled locally, but between which data
flows over the public Internet). We studied the
structures of the AS network sampled at different
time points from 1997 to 2001 (12). The SRP of
the AS networks was similar despite their differ-
ent sizes. We find that the SRP of these networks
is very different from that of the geometrically
constrained superfamily, with tetrads 2 to 4 un-
derrepresented and tetrad 5 overrepresented.

Finally, we studied the preferential attach-
ment model of Barabasi and Albert (BA) (28),
which is widely used to study network evolu-
tion. In the BA model, a nondirected network is

grown node by node, connecting each new
node to m existing ones. The probability of
connecting to an existing node i increases with
the number of edges it already has. We find that
the SRP of these networks (Fig. 3) has different
forms for m " 1, m " 2, and high m (29). This
is because not all tetrad patterns can be created
when m " 1 or 2. The present approach can
thus be used to study model networks (28) and
allow comparison of their local structure to that
of real-world systems.

In the SOM Text, we also show the SRP
of tetrads for the directed networks consid-
ered above. We find that generally tetrad
profiles of related networks are similar.
However, networks of different types in the
same triad superfamily sometimes show
distinct tetrad profiles, suggesting that
higher order subgraph profiles can help
refine network classification.

The present approach demonstrates that
networks of the same type share not only
network motifs, but also characteristic SPs
with very similar proportions of motifs and
antimotifs significance. In addition, we find
several superfamilies of networks that have
similar SPs even though they describe dif-
ferent systems of vastly different sizes.
What do the superfamilies mean? One pos-
sibility is that the similarity in SP is acci-
dental and that distinct evolutionary histo-
ries can lead to a similar local structure.

Fig. 3. The subgraph
ratio profile (SRP) for
various nondirected net-
works. The networks
are as follows (12): (i)
The electrical power
grid of the western
United States (4)
(POWERGRID N "
4941, E " 6594) and a
geometric model with
similar clustering coef-
ficient (GEO-MODEL-
PG N " 5000, E "
7499). (ii) Networks of
secondary-structure el-
ements adjacency for
several large proteins
[structure based on the
PDB database (www.
rcsb.org/pdb/); the pro-
teins (and their PDB ID)
were 1A4J, an immu-
noglobulin (PROTEIN-
STRUCTURE-1 N" 95,
E " 213); 1EAW, a
serine protease inhibitor
(PROTEIN-STRUCTURE-
2 N " 53, E " 123);
and 1AOR, an oxi-
doreductase (PROTEIN-
STRUCTURE-3 N " 99,
E " 212)] and a geo-
metric model with similar clustering coefficient (GEO-MODEL-PS
N " 53, E " 136). (iii) The Internet at the autonomous system
level (www.cosin.org) (AUTONOMOUS-SYSTEMS 1 to 6; N " 3015,
3522, 4517, 5357, 7956, 10515; E " 5156, 6324, 8376, 10328,

15943, 21455). (iv) Networks grown according to the preferential
attachment BA model (3) with m " 1 or m " 10 edges per new
node (BA m " 1, 10; N " 1000, 3000, 1000, 3000; E " 1000, 3000,
9901, 29901).

R E P O R T S

www.sciencemag.org SCIENCE VOL 303 5 MARCH 2004 1541

Figure 7: The subgraph ratio profiles (SRP) for a number of different undirected networks both
natural and engineered (this figure taken from [12]). Here they are shown grouped into
so-called “superfamilies” based on SRP similarity. The networks are as follows: (i) The
electrical power grid of the western United States (POWERGRID N = 4941, E = 6594)
and a geometric model with similar clustering coefficient (GEO-MODELPG N = 5000, E
= 7499). (ii) Networks of secondary-structure elements adjacency for several large proteins
[structure based on the PDB database (www. rcsb.org/pdb/); the proteins (and their PDB
ID) were 1A4J, an immunoglobulin (PROTEINSTRUCTURE-1 N = 95, E = 213); 1EAW,
a serine protease inhibitor (PROTEIN-STRUCTURE2 N = 53, E = 123); and 1AOR, an
oxidoreductase (PROTEINSTRUCTURE-3 N = 99, E = 212)] and a geometric model with
similar clustering coefficient (GEO-MODEL-PS N = 53, E = 136). (iii) The Internet at the
autonomous system level (www.cosin.org) (AUTONOMOUS-SYSTEMS 1 to 6; N = 3015,
3522, 4517, 5357, 7956, 10515; E = 5156, 6324, 8376, 10328, 15943, 21455). (iv) Networks
grown according to the preferential attachment BA model [1] with m = 1 or m = 10 edges
per new node (BA m = 1, 10; N = 1000, 3000, 1000, 3000; E = 1000, 3000, 9901, 29901).
Note for further details on data sources see the original article from which this figure is
taken [12]

11

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

SLAC1

SLAC2

SLAC3

PSA

Figure 8: The subgraph ratio profiles (SRP) of SLAC P2P networks at different stages in their evo-
lution to cooperation - network size N = 500, edges E ≈ 3500. In each case three time
ordered network snapshots are shown. The networks were initialised with random topolo-
gies and all nodes as non-cooperative. The first snapshot is taken immediately before any
cooperation has been attained, the second during the rapid outbreak of cooperation and
the final snapshot is taken after stable cooperation is attained. Note the similarity to the
protein-structure superfamily shown in figure 7 - PSA shows the average of the protein
structure results, given for comparison.

2.4 Analysing SLAC and SLACER P2P Networks

Figures 8 and 9 show SRP’s for both SLAC and SLACER P2P networks at different stages in their
evolution 3. In each case three time ordered network snapshots are shown. The application task
that generated the node level utility required for the protocols was to periodically play the Prisoner’s
Dilemma (PD) game with a randomly chosen neighbour and accumulate average payoff. The period
of game playing was one order of magnitude higher than the period used by the SLACER protocol as
shown in figure 4. This means that on average ten games of PD would be played between SLACER
invocations.

As previously discussed, the difference between SLAC and SLACER is that the link drop proba-
bility (W) is set to a value lower than 1 (in this case we used W = 0.9 for SLACER). All nodes in
the network stored a pure PD strategy (either to cooperate or defect) - representing the application
behaviour. The mutation probabilities were set to M = 0.001 and MR = 0.01. We fixed the maximum
in / out degree of each node to 20 links. All links are undirected and hence symmetric. The protocol
perseveres the symmetry of links between nodes at all times.

The networks were initialised with random topologies and all nodes as non-cooperative (defect
strategy). The first snapshot is taken immediately before any cooperation has been attained, the
second during the rapid outbreak of cooperation and the final snapshot is taken after stable cooper-
ation is attained. We do not show the initial network topology since this would be a flat line along

3We used the freely available “mfinder” software tool for identifying the subgraphs in the P2P networks [21], the
P2P networks themselves were implemented in the open source Peersim environment. The code for the SLACER
protocol, in addition to Peersim itself and tutorial materials are available from the Peersim website [22]. The random
sampling service required by SLACER is provided by the Newscast protocol [7]. Peersim was initially developed
within the BISON project [24]

12

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

SLACER1

SLACER2

SLACER3

PSA

Figure 9: The subgraph ratio profiles (SRP) of the SLACER P2P networks at different stages in
their evolution to cooperation compared to the protein structure averages (PSA) - results
for SLACER were obtained in the same was as described for figure 8

the x-axis (being a random network). However, we have found that from any initial topology the
network evolves to the same topology immediately before cooperation breaks-out [5] so we would
expect the shown results to look the same no matter what the starting topology.

Notice that the curves in figures 8 and 9 follow a similar time evolution for both SLAC and
SLACER: immediately before cooperation (snapshot 1) the curve already has a very similar shape
to the final curve, during the outbreak of cooperation (snapshot 2) the curve tends to move upward
slightly (less anti-motifs 1 and 2, but more motifs 3 to 6), then, after stable cooperation is attained
(snapshot 3) the curve tends to flatten (with all points moving towards the x-axis). Motifs 1 and 2
are under represented (anti-motifs) and motifs 3 to 6 are over represented (motifs) but with a large
dip for motif 4 - almost close to zero (identical to the random occurrence) when cooperation has
stabilised (snapshot 3).

The SRP curves shown in figures 8 and 9 can be directly compared to those shown in figure 7 and we
have copied the average of the protein-structure curves onto these figures, labelled as PSA. We note
that the nearest super-family is composed mainly of protein-structure networks and a geographical
growth model. This characteristic anti-motif representation in 1 and 2 and dip at 4 is reproduced in
the P2P networks. However, notice that motif 6 dips slightly in the protein-structure networks but
this is not reflected in the P2P networks. Here the P2P networks look more like the BA models [1]
shown at the bottom of figure 7 or the power-grid networks shown at the top. Notice also that the
early snapshots of SLAC look most like the protein-structure networks - interestingly this is before
cooperation has stabilised. The snapshot 1 networks are taken before any cooperation has formed
in the networks and can therefore only be the result of random copy and rewire since all utilities are
then equal because all nodes use the defect strategy in the PD.

This suggests some rather intriguing new possibilities and re-enforces existing findings. Firstly,
that the motifs and anti-motifs evident in the P2P SRP’s initially result from a randomised process
rather than the specific function of cooperation but that this randomised process is itself an artefact
of an algorithm designed for cooperation. That is, an apparently random process can produce the
same SRP but that this does not mean the underlying process is not driven by a specific function.

SLACER appears to work because a randomised re-wiring process draws the network towards a

13

topology that eventually supports cooperation. We have discussed in detail this multi-stage process
elsewhere [5]. What we see is a complex interplay of function and topology formation leading to
a phase transition in cooperation with negative scaling properties (i.e. the bigger the network the
quicker it happens).

Another interesting result is that the different snapshots show significant differences in the SRP,
such that for a given (P2P network) SRP it would be be possible to predict if it was in a stable
cooperative mode or not - without considering the strategies stored in the nodes. This could possibly
be very useful, since it indicates a way to detect if the network is functioning cooperatively or at
which stage in the evolution to cooperation it has reached based purely on structural characteristics.
Since we have observed SLACER to perform other kinds of cooperative task (not just P2P) and
produce networks with the same topologies we speculate that potentially the final snapshot 3 SRP
signature could characterise many possible application domains that were functioning under SLACER
cooperatively (correctly), even if the specifics of the applications themselves were complex or unknown
or unknowable from a snapshot. If this were the case, then a SRP curve could provide a very powerful
fingerprint of the global collective functioning of a SLACER supported application (even one’s not
yet written!). Also a deviation from the cooperative fingerprint could indicate malfunctioning or
network attacks.

Additionally, as stated previously, the only difference between the SLAC and SLACER protocols
is the link drop probability (W). In SLACER this is lower than one (0.9) and this produces a larger
dip in motif 4 - nearer to the protean-structure networks. It would be interesting to calculate SRP’s
for different values of W to see how this changes the curve.

2.5 Summary

We have briefly summarised some existing P2P protocols that we have designed to promote coopera-
tion - system level utility - when nodes behave selfishly with local information. We performed a motif
analysis by calculating and plotting subgraph ratio profiles as curves. We compared this to existing
work showing curves for various natural and engineered networks. We did not expect to find the
P2P networks to match any of the existing graphs but were intrigued to find that the P2P networks
appeared very similar to a family of protein-structure curves. However, should we be surprised? The
P2P algorithms were inspired by an evolutionary tagging algorithm [14] that produces robust and
desirable life-like properties such as scalability, robustness and self-repair. It therefore may not be so
surprising that the resulting topologies come to resemble naturally occurring networks with similar
properties. In any case, we are excited by the discovery.

Rather than design an algorithm for constructing a particular network form [1] we have designed
the P2P protocols for a specific function - to suppress the individual selfish behaviour of nodes
for the collective good of the network without the need for complex or sophisticated reputation
systems, repeated reciprocal interactions or centralised control. Perhaps this function has some kind
of universal applicability - if so, could this throw any light on protein networks and their role in cell
level computation? Is there really any linkage at all or just superficial similarity?

One interesting idea that this work suggests is that although networks may appear to be constructed
from a random process of copy and re-wire this could be an artefact of an underlying functional process
- which in certain phases reduces to a random process but nevertheless harnesses the functionally of
the properties produced by that process.

Another potentially very useful line of work (for P2P engineering) would be to explore our hunch
that the cooperative fingerprint shown in the SRP will hold over many possible application domains,
hence providing a method for monitoring the network for serious malfunctions or malicious attacks
that degrade collective performance, generically, without having the know the application specifics.
This would be consistent with the thesis of [12] which is that perhaps the super-families identify
some very general underlying functional characteristics even though we might not know the specifics.

14

Our initial work has raised a number of interesting questions which we hope to pursue in future
work.

3 Conclusion

It appears that motif analysis gives deep insights into general properties of evolving information
processing graphs.

What is becoming evident is that in many evolving networks, both natural, artificial and func-
tionally engineered, the relationship between form and function is not simple. Rather than function
dictating form or vice versa, it appears that form and function mutually constrain each other but
only at a very generic level. Neither form nor function is master or slave.

Tinkering heuristics appear prevalent in this relaxed yet constrained relationship between form and
function. In both the software evolution processes and the peer-to-peer protocols studied here, copy
and re-wire heuristics tinker [16, 2] with the network but ultimately support functional properties.
Perhaps “constrained tinkering” could be another word for “design” from an evolutionary perspective.

What is remarkable is that, at the very basic level of the simple motifs that we have explored,
certain kinds of generic functional properties appear to be deducible and, moreover, can be compared
and categorised with simple measures. Rather than the generic level being a problem it offers the
great potential of producing generally applicable tools, techniques and understanding to a wide range
of applications and phenomena.

Science, or understanding, appears to wrestle with the task of identifying function from form
whereas design or engineering traverses the opposite direction - from function to form. In both cases
the road between them is far from direct but somehow they meet on a tinkered landscape.

References

[1] Barabási, Albert-László and Albert, Reka (1999) Emergence of Scaling in Random Networks,
Science 286, 509

[2] Edelman, G. M. and Gally, J. A. (2001) Degeneracy and complexity in biological systems. Proc.
Nat. Ac. Sc. 98(24):13763-13768.

[3] Gamma, E., Helm, R., Johnson, R. and Vlissides, R, (1994) Design Patterns Elements of
Reusable Object-Oriented Software, Addison-Wesley, New York.

[4] Hales, D.; Arteconi, S.; Babaoglu, O. (2005) SLACER: randomness to cooperation in peer-to-
peer networks. In Proceedings of the 1st International Conference on Collaborative Computing:
Networking, Applications and Worksharing, Workshop on Stochasticity in Distributed Systems
(STODIS’05), IEEE Computer Society Press. [DELIS-TR-0119]

[5] Hales, D. and Arteconi, S. (2005) Friends for Free: Self-Organizing Artificial So-
cial Networks for Trust and Cooperation. Submitted to IEEE Intelligent Systems Spe-
cial Issue on Self-management through self-organization in information systems. Available:
http://arxiv.org/abs/cs.MA/0509037. [DELIS-TR-0196]

[6] Hales, D. and Edmonds, B. (2005) Applying a socially-inspired technique (tags) to improve
cooperation in P2P Networks. IEEE Transactions in Systems, Man and Cybernetics - Part A:
Systems and Humans, 35(3):385-395. [DELIS-TR-0111]

[7] Jelasity, M., Montresor, A. and Babaoglu, O. (2005) Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(1):219-252

15

[8] Kong, J. S., Boykin, P. O, Rezei, B., Sarshar, N. and Roychowdhury, V. (2005)
Let your cyberalter ego share information and manage spam. Available as pre-print:
http://xxx.lanl.gov/abs/physics/0504026.

[9] Krapivsky, P. L. and Redner, S. (2005) Network growth by copying. Physical Review E, 71,
036118.

[10] Marti, S., Ganesan, P. and Garcia-Molina, H. (2005) DHT Routing Using Social Links In Peer-
to-Peer Systems III: IPTPS 2004, Revised Selected Papers, LNCS 3279 Springer.

[11] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. (2002) Network
Motifs: Simple Building Blocks of Complex Networks Science, 298:824-827

[12] Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M. & Alon,
U. (2004) Superfamilies of designed and evolved networks Science, 303:1538-42.

[13] Pastor-Satorras, R., Smith, E. D. and V. Solé, R. (2003) ”Evolving Protein Interaction Networks
through Gene Duplication”, Journal of Theoretical Biology, 222, pp. 199

[14] Riolo, R.; Cohen, M.; Axelrod, R. (2001) Evolution of cooperation without reciprocity. Nature
414, pp. 441-443.

[15] Solé, R., Pastor-Satorras, R., Smith, E. D. and Kepler, T. (2002). A Model of Large-Scale
Proteome Evolution. Advances in Complex Systems 5, 43.

[16] Solé, R. Ferrer-Cancho, R. Montoya, J. M. and Valverde, S. (2002) Selection, Tinkering and
Emergence in Complex Networks, Complexity, 8(1):20–33.

[17] Valverde, S and Solé, R. (2005) Network Motifs in Computational Networks: A Case Study in
Software Architecture. Physical Review E 72, 026107. [DELIS-TR-0206]

[18] Valverde, S and Solé, R. (2005) Logarithmic Growth Dynamics in Software Networks. Euro-
physics Letters 72 (5) [DELIS-TR-0207]

[19] Valverde, S., Ferrer-Cancho, R. and Solé, R. (2002) Scale-Free Networks from Optimal Design.
Europhysics Letters 60, pp. 512-517.

[20] Motif Dictionary,
available at: http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html

[21] mfinder network motif detection tool software,
available at: http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html

[22] Peersim Peer-to-Peer Simulator, http://peersim.sf.net

[23] Graphviz graph visualisation software, http://www.graphviz.org/

[24] The BISON Project, http://www.cs.unibo.it/bison

16

