
Deliverable 5.3.2
Applications of bio- and socio-inspired algorithms

in information systems

Due date of deliverable: December 2007

Actual submission date: December 2007

Dissemination level: PU – public

Work Package 5.3: Biologically and Socially Inspired Design for Dynamic Solution Spaces

Participants: UniBO
RAL
UPF
Telenor

Authors of deliverable: Stefano Arteconi (arteconi@cs.unibo.it)
Toni Binci (bincit@cs.unibo.it)
Ozalp Babaoglu (babaoglu@cs.unibo.it)
David Hales (hales@cs.unibo.it)
Alberto Montresor (montresor@dit.unitn.it)
Mark Jelasity (jelasity@inf.u-szeged.hu)
Gian Paolo Jesi (jesi@cs.unibo.it)
Fabio Picconi (picconi@cs.unibo.it)

0

Abstract

This report comprises the complete D5.3.2 deliverable as specified for workpackage WP5.3 in Subpro-
ject SP5 of the DELIS (Dynamically Evolving Large-scale Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, engineer and control large
evolving information systems. The main aim of this workpackage is to understand how algorithms
originating within biological and social sciences can be applied to applications in distributed computer
systems. It is not our aim to present finished applications but to attempt to gain some generic insights
that might inform a method by which other such algorithms can be modified.

To this end we have shifted focus from our planned work from the previous implementation plan
somewhat. This shift has been motivated by two factors: firstly, we became aware (with some horror)
that in realistic environments all our previous approaches were highly vulnerable to malicious attacks,
not at the application level in which free-riding and selfishness were somewhat controlled, but in the
underlying peer-to-peer gossiping infrastructure. All the previous applications we have considered
(including broadcast and content replication) relied on a self-organised gossiping infrastructure. But
this is highly vulnerable to so-called “hub” attacks. Hence we decided to focus on applying our group
selection approach to this infrastructure itself. Many existing proposed, and some deployed, systems
utilise gossip based approaches and our proposed defence mechanism is backward compatible with
such systems.

Secondly, we realised that, it would be productive to apply our approach to existing and highly
deployed systems. To this end we have focused much effort on the existing BitTorrent system.
Specifically we were looking for socially inspired approaches that could be easily retrofitted to this
protocol to defeat existing (and potential future) selfish, exploitative or unfair clients. Again our
proposed approach is backward compatible with existing clients and in theory could be deployed and
empirical results gained from interactions “in the wild” but this is on-going work.

Finally we report on work which applies a biologically inspired model of firefly flash synchronisation
to produce self-organised and robust synchronisation in peer-to-peer overlay networks.1.

1Most papers produced within DELIS are available from the DELIS website as DELIS Technical Reports. Where this
is the case references are appended with the DELIS Tech Report number in square brackets. This indicates the
paper was produced within the DELIS project, not some other project.

1

Contents

1 A secure gossip-based peer sampling service 3
1.1 The problem - the hub attack scenario . 3
1.2 The solution - group selection inspired secure peer sampling service 5
1.3 Summary . 8

2 An improved BitTorrent 8
2.1 Selfish clients . 9
2.2 Enforcing fairness . 9
2.3 Summary . 11

3 Firefly-inspired heartbeat synchronization in overlay networks 11

4 Conclusion 12

2

1 A secure gossip-based peer sampling service

Here we overview recent work reported in [8]. P2P systems, without central servers, need to provide
some method of initiating and maintaining connections between the nodes that comprise them such
that all nodes form a single component. A partitioned network reduces the efficiency of the system, for
many tasks, because nodes in different components cannot communicate. This can be a significant
problem in unstructured systems which operate under highly dynamic environments with nodes
constantly entering and leaving the system.

One general approach to this problem is to implement a protocol that maintains a connected overlay
network between nodes which approximates a random topology. An overlay network topology consists
of each node maintaining logical links to other nodes. A logical link consists of a node identifier that
is sufficient to establish communication using some underlying network infrastructure (e.g. and IP
address and port number over the Internet).

It is well known that a random network topology can maintain a fully connected network that is
highly robust to benign node and link failure. Additionally, a random network offers short paths be-
tween any two nodes in the network which is valuable for many kinds of P2P tasks (e.g. broadcasting
or routing messages between nodes).

A specific method for maintaining robust overlays with random-like topologies is through gossip-
ing. Gossiping protocols rely on the randomized spreading of information between neighbors in a
network. Typically, nodes maintain a set of neighbor links (a so-called cache or view) which indicates
their currently neighbors. Periodically, each node selects some random neighbor from its view and
communicates some information – i.e. gossips – which the receiving node may store and later forward
to its own neighbors. The approach is loosely analogous to individuals in a social network gossiping
between themselves or the spread of an epidemic in a population.

Gossip approaches are attractive because they spread information quickly and robustly over net-
works yet require only simple protocol implementations. A number of gossip-based protocols exist to
maintain random overlay networks in unstructured P2P systems [7, 13]. Although implementations
vary, the basic mechanism involves nodes gossiping their current neighbor links. In this way, using
suitable update functions in the nodes, the cache (or view) can be kept up-to-date and maintain a
random-like connected topology under conditions of high dynamism – where nodes constantly join
and leave the network.

Ironically, however, the power of the gossip approach to spread information quickly over the entire
network can become an achilles’ heel if it is exploited by malicious nodes who wish to defeat the
system by spreading false information to partition the network. Because information spreads so
quickly in gossip networks the problem for non-malicious nodes is that by the time they identify other
nodes as malicious it is too late for them to take action since they are already disconnected from the
network - i.e. their view is completely polluted by the malicious nodes.

We show that by maintaining multiple views over the network (multiple neighbor lists) nodes
can identify malicious nodes before it is too late such that they can take appropriate action by
placing them on an individually maintained black-list. The approach is adaptive, allowing formally
blacklisted nodes to be white-listed if their behavior changes and vice versa. In addition no reputation
information must be shared between nodes because blacklists and white-lists are only individually
maintained. In other words, we present a fully decenralized Secure Peer Sampling Service (SPSS).

1.1 The problem - the hub attack scenario

Here we describe an example of an attack scenario applicable to a gossiping topology maintenance
approach. This attack is a form of the so-called “hub attack” (see [9]) and its effect is summarized
in Figure 1. In a hub attack malicious nodes attempt to get other nodes to connect exclusively
to them. If this is achieved, then the malicious nodes can exit the network leaving their former

3

0 931

751

1

182

234

992

954

945

451

236

48

288

2

830

693

473

497

537

194

424

3 356

291

17

178

484
326

438

4 12

506

641

239
57

430

10

372

115

5

926

184

585

80

962

368

233

69
6

617

550

215

426

967

139

520

694

339

306

7

905
769

671

186529
458

8

130

169

787

689

479

993

781

651

154

217

508

9

374

163

321

280

738

710
718

947

684

880

525

572

678

91

449

11
561

170

860152

328

13

185

211

527

981
494

800

821
675

65

391

417

14

640

53

311

241

482

833

15

276509

633

741

827

545

268

763

16

920
299

636

616

68

34

116
663

204

695

936

128

868
409

118

18

869

864

667

854

859
909

19

534
687

237

932977

487

676

20

573

257

462

618

523

340

232

111

831

672

21

381

893

752

222

753

352

836

22

446

960

465

765

447

913

85 150

420

23
927

284

848
949

739

125 542

744

24

642

314

42

975

737 466

620

25

701

790

35

857

60

849
136

989

691

563

26

472

386

157

599

244

223

27

740

510

624

910359

310

28

137

133

541

774

594

110

260

747
29

828

30

798

367

784

31835

114

167
329

315

151
719

365

544

32

142

899

987

581

123

723

755

792

853

33

262

254 89

242

58

743

794

941

286

36

197

50

818

171

725

481
758

37

690

514

406

577

353

73

258

38

610

448

317

453

775

703

39

788

519

434

59

88

953

454

40

811

395

81

692 946

878

998

41

309

303

623

700

705

607

938

683

659

681

518

799

43

711

405

327

866 888

47

956

44
731

549

872

966

292
817

45

925

407

235

815

677

392

127

275

46

493

421

412

423

757

338

92

802

77

343

375

604

568

49

621

590

246

320

51

82697

428

917 608

141

282

571

52

903

208

803
879

213

415

209

916

485

444

54

363

706

994
829

536

875
373

565

55

283

122

346

971

475
307

728

56

376

345

596

273
90

97

277

587

511 661

906

206

61

816

686

840

507

801

62

564

856

86
555

78

881

480

63

584

269

105

468

727

95

660

324

261

358

231

64

822

805

486

162

982

839

502

66

332

797

951

464

898

264

228

918

67

195

810

715

614

538
471

889

168

722

942

709 622

746

657

70 93

107

313 785

71

724

654

212
598

991

72

978

576

895

450 597

754
274

670

74
658

433

713

153

646

160

669

75
400

226

245
410

437

76
188

108

512

567

191

175

181

504

298

776

79
383

425

535

852

714

593

843

138

180

771

844

83

612

551

570

476

862

84

902

652
357

924
342

441

720

177

914

907 146

495

589

87
113

996

192615

940

729

809

272

591

717

379

161

378

948

94

861

793

102

526

199

431

96

403

140

354

756

631

666

767 871

668

98699
548

201

900

325

528

411

99
588

478

341

461

240

696

100

278

445

546

101

773

265

396

419

103

385
229

281

874

104
768

557

887

106

335

674

812

490

595726

109

143

253

558

398

183

955

928

664

394

355

112

399

708

469

944

921

296

605

293

637

117 644824634

807

119

806

682 896

120

973

121
656

559144

516 124

348

890

251

159

759

745

845

371965

126566

156432

626

129

131

187
766

777

418

271

132976

457

189961

846

248

134

289

556

474

786
919

135

912

884

842

630

193

500

779
531

266

837

256

255

408

388

145

761

369
483

330147

885

780

974

216

532

148

704

295

149

838

574
460

190

575

547

155823

250

158

553

404

316

427

247

300

377

203

635

712

698

915
297

207

813

164

165873

749

513
505

166

179

969

939

796

389
172

688

173

366

522
489

174
707

470

625

611

515

176

224

552

804560

760
521

825

301

950

380
347

413

732

196

259

791

210

716

463

963

467

331

583

970

748

452

680

384

736

980

702

200

390

653

221

629

198

496

937

933

983

733

579

986

202

734

841

285

600

742

988

439

662
540

602

205

851

764

645 220

344267

886

847

870

934

586 362

957

650

214

582
305517

263

337

819

227

218

219

959

308

897

762

647

613

855

498

850

930

908

876

225

422

578

360
304

929

499

911

322

230

443
323

416

488

238

834

832

952

783

665

243

904

361

877

964

892

735554

643

459

501

789

249

867 569

397

252
649

279 543

442

393

387

985
648

351

270

638

894

580

891

491

382

364

721
958

883

999

778

673

685

287

820

414

290

294

302

436

312

319

456

679

601

318

333

334

627

336349

772

628

350

795

370

606

826

750

814

730

401

402
972

429

435

440

562

619

632

923

808

455

524

865

863

492

922

477

984

858

935

943

503

530
639

990

603

592

533

539

782

609

770

882
655

968

979
997

995

901

(a) A healthy random graph topology (b) The graph after malicious attack

Figure 1: Overlay topology before and after a hub attack: the random graph depicted in (a) becomes
fully disconnected in (b). The graph out-degree (constant) is set to 20, but only 3 links
per node are displayed for clarity. Less than 20 gossiping cycles are required to disrupt the
graph. Network size is 1000 nodes.

neighbors without any valid neighbors and hence partitioning them from the network. To illustrate
the problem, consider a gossiping network in which each node maintains a list of c neighbors (c = 20),
called its cache or view. When the network is performing correctly the peers are wired in a random
graph topology with out-degree c and the graph is continuously rewired over time. The elements of
these caches are continuously updated and exchanged between nodes during gossiping interactions.

At some point, k nodes in the system (e.g., k = c in the example) start colluding and behaving
maliciously exchanging forged caches; then, after a short amount of time spent in their malicious
activities, they leave the network. The forged caches exchanged by the attacker nodes hold the
identifiers of the other malicious nodes; this exact malicious content of the cache is always replayed
at every gossip exchange.

Figure 1(a) shows the overlay in normal conditions; Figure 1(b) shows the same graph after the
malicious nodes exit: within a very short time the original overlay is completely disrupted. The
infection rate proceeds quickly, as can be expected from a gossiping protocol. In fact, every well-
behaving node will accept the attacker’s cache with high probability (see Section 1.2); this means
that in just one exchange a node will have all its cache polluted by malicious identifiers if it is directly
connected to a malicious node. In other words, all its neighbors are now malicious nodes and it can
no longer initiate a gossip exchange with a non-malcious node.

Only a nondefeated, nonmalicious, node B can help a defeated one, say A, provided B has As
identifier in its local cache. However, when B contacts A, we can expect that after the exchange
half of the local caches of A and B, respectively, will be polluted with identifiers of malicious nodes.
As a consequence, both nodes will have 50% of their cache polluted; therefore, even contacting a
nonmalicious node will generally also spread the pollution and increase the chance that a nondefeated
node contacts a malicious one.

There is no way for a nonmalicious node to identify a malicious one as they seem to play fairly;
however, as the attackers always pass on the same cache (or a very similar one), it is easy for any

4

API

Cache 3 Cache 4Cache 2Cache 1 Cache 5

Black List White List

selectRndPeer()

return best ranked cache

return random

peer from cache

replace

blacklisted

IDs in caches

abort gossip if

partner ID

blacklisted

update black- and

white-list based on

gossip quality

Figure 2: Schematic of the decentralized SPSS; it maintains multiple caches to support multiple ran-
dom overlays. Black and white-lists screen incoming gossip requests and refresh malicious
cache entries.

node to keep track of the last cache provided by a neighbor in order to detect them. Sadly, when a
non-malicious node detects the bogus cache replayed by the same neighbor, it is too late to react since
the node cache is completely filled with malicious identifiers. When each node’s cache is completely
polluted, the malicious nodes may decide to leave the network, leaving it in a completely disrupted
state without any hope of recovery, as shown in Figure 1 (b).

In this section we have introduced the general idea of a hub attack as applied to a gossip based
topology manager service. In the next section we specify in a little more detail the generic gossip
protocol approach and the specific protocol variant we used for the purposes of our simulations.

1.2 The solution - group selection inspired secure peer sampling service

Here we outline our distributed secure peer sampling service (SPSS) that can deal with the hub
attack just described.
Multiple overlays: As we have seen the main obstacle to prevent and detect the hub attack is
represented by its high spreading speed. Such a high speed leaves no time for the peers to make any
successful guess about the identity of the attackers.

The basic idea for the fully distributed SPSS is based on using multiple overlay graphs combined
with black and white lists. By maintaining multiple overlays (each node having a set of distinct
instances of views) means the neighborhood at every instance will be distinct with very high prob-
ability because the overlays have independent random-like topologies. Essentially, the multiple view
caches over the same node population, which every node adopts, give each peer a snapshot of what
is going on in distinct (random) neighborhoods of the overlay. We call extra caches the set of view
caches belonging to each peer; every cache in the set is a random snapshot of a distinct overlay

We assume an attack model in which a set of k colluding attackers attempt to pollute the caches
of all nodes.

Each node can monitor the pollution ratio by looking at its extra caches. Since the network

5

population of all the overlay instances is the same, all the extra caches will become polluted by the
same k malicious node IDs, if no checking action is performed. Due to the random nature of the
available overlays, it is very unlikely that an attacker could defeat all caches of the same victim peer
in a short time window. Essentially, the multiple caches are useful in order to perceive how malicious
nodes are spreading the infection from distinct directions over distinct overlays. Due to the spreading
infection, we expect that common node ID patterns will emerge in all (or in the majority) of the
caches.
Quality rating: Each peer can build a set of statistics in order to guess or detect who are the
malicious nodes from the emerging patterns. This knowledge base is stored as private, local black-
and white-lists that it is never exchanged among neighbors. This obviates the second-order issue of
malicious nodes spreading incorrect reputation information.

During a gossip exchange, both parties rate the quality of the exchange. The quality rate is given
by the number of items lying in the intersection of the exchanged caches among node A and B:
r = |{cacheA ∩ cacheB}|. This quality rate influences the probability to reject the gossip exchange
with this current neighbor. Essentially, when two caches are similar (or identical) it is likely that
the current neighbor is a malicious node and with high probability it should not be accepted. The
probability to abort the exchange is proportional to the fraction of the common IDs found among
the two caches: r/c, where c is the usual cache size.

The rank results are collected in the node’s knowledge base comprising a blacklist and whitelist.
The information collected in this structure is refreshed according to an aging policy to avoid that
any wrong guess would have unbounded consequences over time.

Any attempt to exchange views with a blacklisted neighbour is declined. In addition, when a node
suspects one of its caches is polluted, it tries to refresh the cache randomness by substituting the
currently blacklisted node IDs with high quality (whitelisted) node IDs collected during the previous
exchanges.

During the protocols execution, one or more cache can be defeated by the attackers. However this
is not critical, as the cache will be restored as soon as the node has collected a suitable knowledge
base. It is very unlikely that all node’s caches become polluted in a short amount of time; in this
unlucky condition and if the knowledge base is not ready or not correct, the only chance for a node
is to be contacted by a well behaving node in order to partially restore at least one of its caches.
Figure 2 shows a schematic of the main components maintained by the protocol within each node.
The algorithm: Our distributed approach is focused on the knowledge base each node has to build.
Essentially, the knowledge base is represented by two list structures: blacklist and whitelist; the
former holds high frequency and low quality rated node IDs, while the latter holds high quality rated
node IDs. We do not set any explicit size limit for these structures and, as a consequence, their size
may grow to the actual network size. However, due to presence of an aging policy, their actual size
is much less than the theoretical maximum. The SPSS algorithm pseudo-code executed by a node A
is the following:

1. Select a random neighbor B /∈ blacklist
2. Compute the rank value r with B; with Prob(r/c) decline and blacklist B, otherwise accept

the gossip exchange, and whitelist B

These steps are performed in each cycle for every available cache. Two additional actions are
performed concurrently by two threads at the end of each cycle. The first action is to purge the
blacklist and whitelist according to an aging policy; the second action instead, is to repopulate the
caches suspected of being polluted (if any): each node ID in the cache listed in the blacklist is
substituted by a random node ID picked from the whitelist.

Another issue is to clarify how node IDs can be inserted and swapped from the blacklist to the
whitelist and vice-versa. When a node ID has to be inserted in the blacklist for the first time, a
standard TTL value (2 cycles) is bound to the stored ID; if the ID is already present instead, its
TTL value is reinforced (i.e., doubling the current TTL value).

6

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 c
ac

he
 p

ol
lu

tio
n

(%
)

Cycles

no defence
1 cache

2 caches
4 caches
8 caches

Figure 3: Fully decentralized SPSS algorithm. The average pollution level in the caches is shown
over time; multiple distinct caches per node are compared (i.e., 1, 2, 4 and 8 caches) for a
network of size 1,000 nodes. 20 malicious nodes are involved in the attack.

Why it works: It is important to note that having multiple caches belonging to distinct overlay
instances is very different from having a single overlay with a large size. Multiple caches add extra
randomness to the node’s state and avoid to be defeated in just one gossip exchange; in addition,
in extreme conditions (i.e., when the set of attackers is larger than the cache size) they stil give the
chance to identify the attackers.

The value added by multiple PSS overlays is that the infection proceeds from distinct multiple
paths. These dynamics gives each peer more time to detect the most frequent node IDs that appear
in their caches.

A higher-level protocol or application working on top of this fully distributed SPSS can see just a
single cache. This maintains a seamless integration with the standard selectRndPeer() API function.
A smart implementation of the fully distributed SPSS can dynamically export the current best cache
according to concentration of suspected malicious nodes currently listed in the knowledge base (see
Figure 2).
Group selection: The multiple caching concept originates from previous socially inspired evolu-
tionary models of “group selection” [6, 5]. In these models anti-social behavior between nodes was
avoided by allowing nodes to form and move between different clusters or groups in the population
based on utility value comparisons. Essentially, nodes evaluated the quality of their neighbors by
measuring the effectiveness of interaction with them over time – involving some application level task
– and represented this as a utility value. By comparing utilities with other randomly selected nodes
and copying the neighborhoods (caches) of those with higher utility, nodes could avoid interaction
with anti-social free-riding nodes. In this approach nodes maintained a single overlay and made
intra-overlay movements to find better (higher utility) neighborhoods.

For the distributed SPSS we implemented a similar scheme by allowing each node to store multiple
caches and only selecting the best cache based on a measure of utility expressed as cache quality.
From the point of view of what is passed to the API, nodes are constantly shifting between different
views of the network since each cache represents a different set of neighbors. Furthermore, when the
quality for a particular cache becomes low due to possible identification of malicious information, it
is wiped and reinitialized from the whitelist, hence low quality caches are dropped.

7

Hence in SPSS nodes do not move between distinct groups or clusters in a single overlay but
maintain and effectively move between distinct overlays (inter-overlay movement) comprising the
same population of nodes but in different topological configurations. Hence what is being selected
here by each node is the overlay which produces the best cache quality at each given point in time.
Since all nodes actually stay in all overlays at all times (by maintaining a fixed number of multiple
caches) this approach is less a form of evolution and more a form of redundancy with dynamic
selection.

1.3 Summary

In this section we have given an overview of the main ideas and results from [8]. We have presented
a gossip based secure peer sampling service (SPSS) which is inspired by a kind of group selection
process, where the groups are multiple gossip overlays. This is essentially a decentralised version of
[9] with nodes selecting from experience which gossip overlay to use at any given time. This approach
deals with the hub attack scenario discussed. However, there are of course other possible kinds of
gossip based attacks that would not be stopped by the current SPSS - such as multiple identity or
so-called “Sybil attacks” or if a high proportion of the population of nodes maliciously colluded.
These could be topics for future work. The simulation work was performed on the Peersim platform
[14].

2 An improved BitTorrent

In this section we discuss on-going work [11] concerned with improving the performance of the
BitTorrent protocol. BitTorrent is a highly successful file-sharing system. The protocol is designed
to co-ordinate peers so they can download files quickly from those who wish to share them by co-
operatively helping each other to distributed chunks of the file. Peers working together to distribute
are file are commonly known as a “swarm”. This can be contrasted with traditional client / server
approaches where all clients try to download from a single server.

In order to understand how BitTorrent clients may interact it is important to be clear about some
terminology. BitTorrent attempts to produce an efficient solution to the sharing of a file among
a set of peer clients. Efficiency in this context means utilising as much of the available upload
bandwidth as possible under the assumption that peers generally have high download bandwidth.
Upload bandwidth is considered as a scarce and perishable resource - if it’s not used it’s wasted.

BitTorrent incentivises uploading by using a form of tit-for-tat - essentially by disconnecting active
links from other peers that do not upload. However it does not actively balance upload to download
ratios between peers. Hence standard BitTorrent does not enforce fairness. Fairness in this context
means peers will receive as much download data as they upload over time.

For BitTorrent to operate at least some number of peers are required to act altruistically by being
the initial and on-going “seeders” of a file. Seeders posses the entire file and altruistically upload it to
others without requiring anything in return. Incentives for altruism are not built into the protocol.
It is simply assumed seeders must exist.

Given these aspects of the protocol peer clients may act selfishly either intentionally, by minimising
their upload rate, or unintentionally, because of slow physical upload connections. In some sense it
makes no difference to other nodes if a client is intentionally selfish or simply does not have the
capacity to be any other way. The effect is the same – fast and co-operative peers will tend to be
exploited by uploading far more than they download.

8

2.1 Selfish clients

Since the BitTorrent protocol is open this allows any programmer to modify the protocol and deploy
a new client there are many such client variants available. Some are known to intentionally behave
selfishly by attempting to exploit the unfairness that can be tolerated by the standard BitTorrent
client.

Among the many selfish BitTorrent clients that exist “in the wild”, two have recently caught
the attention of the research community, most likely because they have been designed by academic
researchers and their exploitation mechanisms are known.

The first is called BitThief [10], and was developed in the context of a research project at ETH
Zurich. A BitThief client differs from standard BitTorrent in two ways: first, it connects to as many
clients as possible within a swarm, rather than limiting the number of connections as BitTorrent
does; second, BitThief never uploads any data to other nodes. Surprisingly, BitThief clients achieve
download rates similar to standard BitTorrent clients, even though they do not contribute any re-
sources to the network. The reason is that standard clients periodically upload some chunks of data
to other nodes without asking anything in return. This mechanism, called optimistic unchoking, is
normally used to bootstrap new nodes joining the swarm, but in this case is exploited by BitThief
clients to get data from other nodes without ever giving anything back.

The second client is called BitTyrant [12], and was designed by the University of Washington at
Seattle. BitTyrant exploits the fact that standard BitTorrent clients with fast upload connections
will reciprocate (i.e., exchange data) with other nodes even if they download less data than what
they upload to other nodes. The reason is that standard clients do not limit their upload bandwidth
when they engage in a bidirectional data exchange with another, possibly slower node. BitTyrants
strategy consists in looking for fast nodes, and exchanging data with them but uploading as little
data as possible.

2.2 Enforcing fairness

In order to reduce exploitation by selfish or slow peers it is possible to enforce fairness by using
a variant of tit-for-tat called block level tit-for-tat [2]. Essentially, peers disconnect from active
connections that are exploiting them, by not providing a balanced upload / download ratio over
time, and search for better connections. We created a simulation model of the BitTorrent protocol
to test this. Figure 4 shows a comparison of download times for two sets of clients in a swarm and
their associated average upload / download ratios for the standard BitTorrent protocol. Fast clients
are assumed to have a 100kb upload rate and slow clients only 10kb upload rate. Notice that slow
clients do as well as fast clients (or even better) at the expense of fast clients. A similar curve is
seen when intentionally selfish clients are used. In this context peers are actually incentivsed to be
selfish. Figure 5 shows what happens when block-level tit-for-tat is used. Slow peers take far longer
to download the file. A similar curve is seen for selfish clients. Hence the download / upload ratios
evidence a fairer outcome.

Here we show one further experiment in figure 6. Here fast and slow clients are separated into two
independent swarms. As can be seen this further improves fairness and reduces slow clients download
performance. Our on-going work involves allowing clients to actively move between swarms serving
the same file in order to self-organise this situation. In order to ensure selfish and / or slow clients
can not enter fair and / or fast swarms we are experimenting with a simple mechanism that allows
nodes entering a new swarm to be assessed by existing members of the swarm and then only actively
connected to them if they are fair clients.

9

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
C

D
F

SLOW
FAST 0.2

1.6

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent standard protocol ---- One swarm containing slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.5

1.0

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- One swarm with slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.7
0.9

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- Two swarms, one with slow nodes, other with fast

Figure 4: BitTorrent standard protocol – One swarm containing slow and fast nodes. The curves
show Cumulative Download Frequency and the bar chart shows average fairness in terms
of upload / download rates.

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
C

D
F

SLOW
FAST 0.2

1.6

0.0

0.5

1.0

1.5

2.0

SLOW FAST
U/

D

BitTorrent standard protocol ---- One swarm containing slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.5

1.0

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- One swarm with slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.7
0.9

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- Two swarms, one with slow nodes, other with fast

Figure 5: BitTorrent with Block-Level Tit-for-tat – One swarm with slow and fast nodes. The curves
show Cumulative Download Frequency and the bar chart shows average fairness in terms
of upload / download rates.

10

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
C

D
F

SLOW
FAST 0.2

1.6

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent standard protocol ---- One swarm containing slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.5

1.0

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- One swarm with slow and fast nodes

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Simulator cycles

D
ow

nl
oa

d
tim

e
CD

F

SLOW
FAST

0.7
0.9

0.0

0.5

1.0

1.5

2.0

SLOW FAST

U/
D

BitTorrent with Block-Level Tit-for-tat ---- Two swarms, one with slow nodes, other with fast

Figure 6: BitTorrent with Block-Level Tit-for-tat – Two swarms, one with slow nodes, other with
fast. The curves show Cumulative Download Frequency and the bar chart shows average
fairness in terms of upload / download rates.

2.3 Summary

We have outlined on-going experiments with a detailed simulation of the BitTorrent protocol that
test mechanisms for enforcing fairness. The mechanisms discussed are backwards compatible with
existing protocols and hence could be deployed and test “in the wild” by modifying client code
and deploying. The approach should tackle exploitation by both intentionally selfish clients and
slow clients that currently exploit fast and co-operative clients. The multi-swarm approach offers
the potential to import a group-like selection process into BitTorrent where an ecology of swarms
represent groups, with those producing fair outcomes for the clients within them being stable and
growing whereas those containing exploiters will dissolve. We have not explored here the effect on
efficiency that such fairness-based approaches may have. This depends on the ecology of existing
clients and their capacities. It may be the case that some efficiency sacrifice is the price that has to
paid to maintain fairness and disincentivize selfish client behaviour. This is on-going work which we
hope to report on soon [11].

3 Firefly-inspired heartbeat synchronization in overlay networks

Heartbeat synchronisation strives to have nodes in a distributed system generate periodic, local
“heartbeat” events approximately at the same time. Many useful distributed protocols rely on the
existence of such heartbeats for driving their cycle-based execution. Yet, solving the problem in
environments where nodes are unreliable and messages are subject to delays and failures is non-
trivial. Here we briefly overview the work presented in [1].

In our protocol, nodes send flash messages to their neighbors when a local heartbeat triggers. They
adjust their their next heartbeat based on incoming flash messages using an algorithm inspired by
mathematical models of firefly synchronisation [3]. We report simulation results of the protocol in
various realistic failure scenarios typical in overlay networks and show that synchronisation emerges
even when messages can have significant delay subject to large jitter.

An innovative aspect of the Ermentrout [3] model is that it adjusts the local length of the flash
cycle based on flashes received from neighbours, rather than adjusting purely the phase of the flash.
This means that nodes need not initially have exact knowledge of cycle lengths but can converge to
them. Previous synchronisation models have focused on adjusting the phase only.

11

This is consistent with several measurements of all-

pairs latencies of a group of nodes such as the King

and Meridian data sets [4, 17]. Furthermore, it intro-

duces the additional difficulty of a totally unpredictable

latency. Further simulations with a publicly available

data set will also be discussed.

Initial settings. At the beginning, a network contain-

ing between 210 and 216 nodes is created. Nodes emit

their first flash in the first three seconds of their life and

set their period randomly selected uniformly between

0.85s and 1.15 seconds, which also corresponds to the

minimum and maximum cycle lengths !l and !u, re-

spectively. In other words, nodes start completely un-

synchronized, and their internal periods are subject to

large skew. In simulationswhere churn is present, nodes

joining the network are also initialized in this manner.

Measures of synchronization quality. Our main

measure of the quality of synchronization is the emis-

sion window length, which measures the time between

the first and the last flashes of a coherent emission (as

described below). An emission is a collection of flash

events, potentially occurring at different nodes. Infor-

mally, an emission is coherent if it is preceeded and fol-

lowed by long “silent” intervals without flashes. For

example, in most of our experiments, the protocol al-

ternates short periods of time with flashes (few tens of

milliseconds), with long intervals of silence (approxi-

mately one second, or longer depending on !). In our

simulations, emissions are coherent when they are pre-

ceeded and followed by at least 200ms of silence. This

value is used only for presentation purposes and has no

effect on the protocol execution.

When experimenting with different cycle lengths,

we will consider additional measures: the relative emis-

sion window length, expressed as percentage over the

cycle length, and the overhead, measured as the average

number of bytes transmitted, per node and per second.

To estimate the latter, we assume that a ping message

requires 32 bytes (IP header + UDP header + 4 bytes of

message identification).

Graphical intuition of the behavior of the protocol.

We begin with three figures that graphically depict the

behavior of the protocol as a function of time. To be

graphically appealing, they are obtained from a single

experiment.

In Figure 2, 1024 nodes are synchronized using our

protocol. The time evolves along the x-axis, while in-

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

N
o
d
e
 I
d

Time (s)

Figure 2. Flashes emitted by a network of 210

nodes over an interval of 60 seconds.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

N
o
d
e
 I
d

Time (ms)

Figure 3. Flashes emitted by 210 nodes during

a single coherent emission.

dividual nodes are shown on the y-axis. A dot with co-

ordinate (x,y) represents a flash event executed by node
y at time x. In the first seconds of simulation, flashes

look like random noise, and no coherent emission can

be identified. This is the effect of the initialization de-

scribed above. After about 10 seconds, however, nodes

starts to emit coherent emissions, represented by verti-

cal lines, that become more and more defined as time

passes.

Figure 3 zooms in on a single coherent emission

(the last one of Figure 2). The x-axis is now relative

to the beginning of the emission window, which lasts

approximately 30ms. Each dot, again, represents an in-

dividual flash. The figure shows that nodes are even

more synchronized than the 30ms value could suggest:

Figure 7: Flashes emitted by a network of 1000 nodes over an interval of 60 seconds. A black dot
indicates a node flash. Initially nodes are unsycronized but quickly self-organise towards
synchronous flashing.

Figure 7 shows results from a simulation run in which initially unsynchronised nodes quickly self-
organise to synchronised flashing. The underlying network peer sampling service was provided by
Newscast [7]. The simulations were implemented on the Peersim platform [14].

4 Conclusion

We have presented an overview of two application areas which broadly apply group-like selection
dynamics to improve performance in the presence of malicious (in the gossip case with SPSS) and
selfish (in the BitTorrent case) peers. We discuss further this group selection approach in the form
of a design pattern applied to a number of application domains in [4]. We report on this work in
DELIS deliverable D5.4.3 so we will not discuss this here. Suffice to say that the hub attack and
BitTorrent applications we have presented here follow this general approach.

Open distributed systems, which are increasingly popular “in the wild” over the internet will
always be victim to malicious and selfish behaviour. This is the price paid for the open nature of
such systems. It is therefore increasingly necessary to develop broad design approaches and patterns
that can be applied in different domains that can encourage, if not complete security or efficiency
then, a disincentive for bad and anti-social behaviour.

References

[1] Babaoglu, O., Binci, T., Jelasity, M. and Montresor, A (2007) Firefly-inspired heartbeat syn-
chronization in overlay networks. In Proceedings of the First International Conference on Self-
Adaptive and Self-Organizining Systems (SASO2007), July 2007, Boston, MIT. IEEE Press.
[DELIS-TR-0570]

12

[2] Bharambe, A., Herley, C. and Padmanabhan, V. (2005) Some Observations on BitTorrent. Proc.
ACM SigMetrics 2005.

[3] Ermentrout, B. (1991) An adaptive model for synchrony in the firefly pteroptyx malaccae.
Journal of Mathematical Biology, 29(6):571585, June 1991.

[4] Hales, D., Arteconi, S., Marcozzi, A., Chao, I. (2007) Towards a Group Selection Design Pattern.
Technical Report UBLCS-2007-25, University of Bologna, Dept. of Computer Science. [DELIS-
TR-0568]

[5] Hales, D. and Arteconi, S. (2006) SLACER: A Self-Organising Protocol for Coordination in P2P
Networks. IEEE Intelligent Systems 21(2):29-35. [DELIS-TR-0370]

[6] Hales, D. and Edmonds, B. (2005) Applying a socially-inspired technique (tags) to improve
cooperation in P2P Networks. IEEE Transactions in Systems, Man and Cybernetics - Part A:
Systems and Humans, 35(3):385-395. [DELIS-TR-0111]

[7] Jelasity, M., Kowalczyk, W. and van Steen, M. (2003) Newscast Computing Technical Report
IR-CS-006, Vrije Universiteit Amsterdam, Department of Computer Science, November 2003,
Available at: http://www.cs.vu.nl/globe/techreps.html#IR-CS-006.03

[8] Jesi, G. P, Hales, D., van Steen, M. (2007) Identifying Malicious Peers Before Its Too Late: A
Decentralized Secure Peer Sampling Service. Proceedings of the First International Conference
on Self-Adaptive and Self-Organizining Systems (SASO2007), July 2007, Boston, MIT. IEEE
Press. [DELIS-TR-531]

[9] Jesi, G. P., Gavidia D., Gamage, C. and van Steen, M. (2006) A Secure Peer Sampling Service.
UBLCS-2006-17, University of Bologna, Dept. of Computer Science.

[10] Locher, T., Moor, P., Schmid, S. and Wattenhofer, R. (2006) Free Riding in BitTorrent is Cheap.
5th Workshop on Hot Topics in Networks (HotNets), Irvine, California, USA, November 2006.
http://dcg.ethz.ch/projects/bitthief/

[11] Picconi, F. et al (forthcoming) Multi-Swarm Dynamics for Fairness in BitTorrent. Technical
Report, University of Bologna, Dept. of Computer Science.

[12] Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A. (2007) Do incentives
build robustness in BitTorrent? 4th USENIX Symposium on Networked Systems Design &
Implementation (NSDI 2007). http://bittyrant.cs.washington.edu/

[13] Voulgaris, S., Gavidia, D., and van Steen, M. (2005) CYCLON: Inexpensive Membership Man-
agement for Unstructured P2P Overlays. J. Network Syst. Manage., 13(2).

[14] Peersim Peer-to-Peer Simulator, http://peersim.sf.net

13

