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Abstract

This report comprises the complete D5.2.1 deliverable as specified for workpackage WP5.2 in Subpro-
ject SP5 of the DELIS (Dynamically Evolving Large-scale Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, engineer and control large
evolving information systems. The main aim of this workpackage is to understand how evolved
structures emerge in networks when there is no central design or control.

Complex networks emerge under different conditions including design (i.e., top-down decisions)
through simple rules of growth and evolution. Such rules are typically local when dealing with bi-
ological systems and most social webs. An important deviation from such scenario is provided by
groups, collectives of agents engaged in technology development, such as open source (OS) commu-
nities. Here we analyze their network structure, showing that it defines a complex weighted network
with scaling laws at different levels, as measured by looking at e-mail exchanges. We also present
a simple model of network growth involving non-local rules based on betweenness centrality. Our
weighted network analysis suggests that a well-defined interplay between the overall goals of the
community and the underlying hierarchical organization play a key role in shaping its dynamics.
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1 Introduction

Networks predate complexity, from biology and society to technology [1]. In many cases, large-scale,
system-level properties emerge in a self-organized manner from local (bottom-up) interactions among
network components. This is consistent with the general lack of global goals that pervade cellular
webs or acquaintance networks. However, when dealing with human collective efforts towards a given
objective, such as in a company or in distributed technology development, the situation can be rather
different. Top-down decisions might dominate the structure and function in a hierarchical way. But
how to distinguish between the two scenarios?

The intrinsic network organization of social interactions allows to explore this questions in depth.
Many of these networks can be reconstructed by using e-mail exchanges among agents . The result-
ing graph provides a well-defined picture of the global community organization. By looking at its
topology, we could in principle identify the presence (or absence) of self-organized (SO) or designed
(top-down) patterns. Here SO refers to patterns emerging from local rules. Such system would dis-
play global features resulting from a bottom-up dynamics. Eventually, a model of network growth
can be proposed in order to explain the origin of such pattern. An example of this is the work by
Caldarelli et al. [2] who studied the emergence of weighted social networks. These authors showed
that the structure of e-mail webs could be explained using a simple local mechanism based on positive
feedback and reciprocity.

In this paper we explore the problem of how SO and hierarchy might actually emerge and coexist
in a distributed community of technological developers. Specifically, we will present the first analysis
of weighted open source (OS) communities [3]. In OS communities, software is developed through
distributed cooperation among many agents. These communities are known to display a large amount
of distributed, bottom-up organization. Specifically, large groups of programmers are involved in
building, assembling and specially maintaining large-scale software structures. The community plays
multiple roles as a design system but also as a distributed intelligence system able to accept or reject
changes introduced by agents. As described, it looks like we are talking about a largely self-organized
entity. Given the quality of the information available on their internal structure, OS organizations
offer a unique opportunity to test if they are fully self-organized social groups [4] in constrast with
more hierarchical, top-down organized social groups (i.e., large companies).

One possible test to these potential modes of community organization involves using the net-
work of interaction between programmers working in a given software system. Software systems
are themselves complex networks [5], which have been shown to display small world and scale-free
architecture. Since the topological organization of software designs is scale-free, we might suspect
that the community organization also displays common traits with the underlying software architec-
ture. Previous work on engineering problem-solving networks involved in product development [6]
revealed that these groups define a complex network with heterogeneous link distributions. However,
these networks are unweighted and largely dominated by top-down constraints. Here, we consider a
different type of engineering community where relations among agents are weighted and change in
time without previously defined hierarchies.

As we will shown here, OS networks (OSN) display scaling laws but also a well-defined core of
main programmers defining a special subset of agents. Such finding suggests that, even in these
distributed groups of individuals, emergence of hierarchy might be inevitable. Our analysis reveals
the interplay between bottom-up, distributed decision making periphery in the OSN involving many
agents and a top-down driven, centralized core of agents. Such rich-club structure seems to place
some limits to the degree of distributedness achievable by multiagent-based technological design.

In the next sections we summarise, in overview, results given in [7]. There we provided an empirical
analysis of OS developer networks and presented a network growth model that agrees with the
empirical data.
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FIG. 1: Social networks of e-mail exchanges in open source
communities. Line thickness represents the number of e-mails
flowing from the sender to the receiver. Dark depicts active
members and frequent communication. (A) Social network
GAmavis for the Amavis open-source community. (B) Social
network GTCL for the TCL (i.e., Tool Command Language)
open-source community with N = 215 members and 〈k〉 ≈ 3.
In both networks, a few hubs (center dark nodes) route the
bulk of information generated by many periphery nodes.

correlations are analyzed. Section V presents a non-local
model that agrees with empirical observations. Finally,
section VI provides a discussion.

II. EMAIL NETWORKS OF OPEN-SOURCE
COMMUNITIES

Social network analysis depicts agents and their rela-
tionships with nodes and links, respectively [7]. Elec-
tronic exchanges allows tracking every social interaction
and enables us to study highly detailed registers of hu-
man activities. Some remarkable examples of this are
web surfing and e-mail communication. For example,
e-mail is an important vehicle of communication and we
can recover social interactions by analyzing all e-mails ex-
changed within a given community [11–14]. These e-mail
studies recover the underlying social network by repre-
senting each agent with a node and a link indicates that
e-mails have been exchanged between its endpoints.

We apply this methodology to the study of human in-
teraction in the context of open source software projects,
an interesting and poorly understood social phenomenon.
Investigating OS social structure is useful to understand
how human teams design complex engineering systems
[15]. The study of OS communities is different from other
studies of online communities [8]. Both communities are
apparently quite similar if we look at how communica-
tion takes place (i.e, Internet-enabled communication).
However, interaction in the OS community stems from
the common goal of achieving a functional system, i.e.,
an OS software system, while communication in general
web sites spans a broader range of interests and motiva-
tions.

Following [9], we have analyzed the structure and mod-

eled the evolution of social interaction in OS communities
[10] .We study a publicly available electronic database de-
scribing the e-mail activity in different open-source com-
munities [9]. The e-mail data comes from the Source-
Forge (SF) web site (http://sourceforge.net), a large and
popular OS project repository that hosts a very large
number OS software projects. This web site constitutes
a centralized resource for managing software projects, is-
sues, communication and source code. The communica-
tion services offered by SF store (and classify) all e-mail
exchanges between project members in web pages. For
example, there are web-based resources used to discuss
development, software usage, and bug issues. These web
pages can be searched by users to find all the previous
e-mails regarding the problem they are trying to solve.
From this collection of web pages, we have discarded all
e-mails not directly related to the software process (i.e.,
personal issues, spam, etc.). We have limited our analy-
sis to e-mail traffic associated to bug reports, which is a
key feature of software development.

We have analyzed 120 OS networks corresponding to
different software projects. We reconstruct the social net-
work with the following method. For each OS network
Ω = (V,L), nodes vi ∈ V depict community members
while directed links (i, j) ∈ L denote e-mail communi-
cation whether the member i replies to the member j.
At time t, a member vi discovers a new software error
(bug) and sends a notification e-mail. Afterwards, other
members investigate the origin of the software bug and
eventually reply to the message, either explaining the so-
lution or asking for more information. Here Eij(t) = 1
if developer i replies to developer j at time t and is zero
otherwise. From Eij we define link weight eij as the to-
tal amount of e-mail traffic flowing from developer i to
developer j:

eij =
T∑

t=0

Eij(t) (1)

where T is the timespan of software development. We
have found that e-mail traffic is highly symmetric, i. e.
eij ≈ eji. In order to measure link symmetry, we intro-
duce a weighted measure of link reciprocity [16] namely
the link weight reciprocity ρw, defined as

ρw =
∑

ie=j (eij − ē)(eji − ē)
∑

ie=j (eij − ē)2
(2)

where ē =
∑

ie=j eij/N(N − 1) is the average link
weight. This coefficient enables us to differentiate
between weighted reciprocal networks (ρw > 0) and
weighted antireciprocal networks (ρw < 0). The neu-
tral case is given by ρw ≈ 0. All systems analyzed here
display strong symmetry, with ρw ≈ 1. This pattern
can be explained in terms of fair reciprocity [2], where
any member replies to every received e-mail. Thus, we

Figure 1: Social networks of e-mail exchanges in open source communities. Line thickness represents
the number of e-mails flowing from the sender to the receiver. Dark depicts active members
and frequent communication. (A) Social network GAmavis for the Amavis open-source
community. (B) Social network GTCL for the TCL (i.e., Tool Command Language) open-
source community with N = 215 members and 〈k〉 ≈ 3. In both networks, a few hubs
(center dark nodes) route the bulk of information generated by many periphery nodes.

2 Empirical data from e-mail networks of open source communities

We have analyzed 120 OS networks corresponding to different software projects. We reconstruct
the social network with the following method. For each OS network Ω = (V,L), nodes vi ∈ V
depict community members while directed links (i, j) ∈ L denote e-mail communication whether the
member i replies to the member j. At time t, a member vi discovers a new software error (bug) and
sends a notification e-mail. Afterwards, other members investigate the origin of the software bug and
eventually reply to the message, either explaining the solution or asking for more information. Here
Eij(t) = 1 if developer i replies to developer j at time t and is zero otherwise. From Eij we define
link weight eij as the total amount of e-mail traffic flowing from developer i to developer j:

eij =
T∑

t=0

Eij(t) (1)

where T is the timespan of software development. We have found that e-mail traffic is highly sym-
metric, i. e. eij ≈ eji. Thus, we can make the simplifying assumption that the network is undirected.

However, we do not restrict our study to purely topological links. Instead, their weighted structure
is also taken into account. The edge weight (interaction strength) is defined as wij = eij + eji, which
provides a measure of traffic exchanges between any pair of members. From this weighted matrix we
can estimate node strength [10] as a local measure defined as:

si =
∑

j
wij (2)

i. e. the total number of messages exchanged between node i and the rest of the community. This
definition will be used below in our analysis of the weighted OS network.

Figure 1 shows two social networks recovered with the above method. We can appreciate an
heterogeneous pattern of e-mail interaction, where a few members handle the largest fraction of e-mail
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FIG. 2: (A) Average betweeness centrality scales with de-
gree 〈b(k)〉 ∼ kη with η ≈ 1.59 for the Python OS com-
munity. This exponent is close to the theoretical prediction
ηBA ≈ (γ − 1)/(δ − 1) = 1.70 (see text). (B) Cumula-
tive distribution of undirected degree P>(k) ∼ k−γ+1 with
γ ≈ 1.97. (C) Cumulative distribution of betweeness central-
ity P>(b) ∼ b−δ+1 with δ ≈ 1.57 for b > 102.

Project N L ρw 〈k〉 γ δ η (γ − 1)/(δ − 1)

Python 1090 3207 0.98 2.94 1.97 1.57 1.59 1.70
Gaim 1415 2692 0.98 1.9 1.97 1.8 1.24 1.21
Slashcode 643 1093 0.98 1.69 1.88 1.58 1.42 1.51
PCGEN 579 1654 0.98 2.85 2.04 1.67 1.54 1.55
TCL 215 590 0.98 2.74 1.97 1.33 2.34 2.93

TABLE I: Topological measures performed over large OS
weighted nets. The two last columns at left compare the
observed η exponent with the theoretical prediction η =
(γ − 1)/(δ − 1) (see text).

can make the simplifying assumption that the network is
undirected.

However, we do not restrict our study to purely
topological links. Instead, their weighted structure is
also taken into account. The edge weight (interaction
strength) is defined as wij = eij + eji, which provides a
measure of traffic exchanges between any pair of mem-
bers. From this weighted matrix we can estimate node
strength [19] as a local measure defined as:

si =
∑

j
wij (3)

i. e. the total number of messages exchanged between
node i and the rest of the community. This definition
will be used below in our analysis of the weighted OS
network.

III. TOPOLOGY OF OS NETWORKS

Figure 1 shows two social networks recovered with the
above method. We can appreciate an heterogeneous pat-
tern of e-mail interaction, where a few members han-
dle the largest fraction of e-mail traffic generated by the
OS community. The undirected degree distribution is
roughly a power-law P (k) ∼ k−γ with γ ≈ 2 (see fig.

2B). However, P (k) displays a hump at some interm-
mediate degree kc (see fig. 2B). The hump suggests a
two-level classification of nodes in the OS network: pe-
riphery nodes with few connections having k < kc and
hub nodes having k > kc. This desviation might be an
indication of a rich-club ordering in the OS network (see
below).

In order to understand the role played by hubs in OS
networks, we have measured the betweeness centrality bi

(or node load [18]), i.e. the number of shortest paths
passing through the i-th node [17]. Betweeness central-
ity displays a long tail P (b) ∼ b−δ with an exponent δ
between 1.3 and 1.8 (see table I and also fig. 2C). It
was shown that betweeness centrality scales with degree
in the Internet autonomous systems and in the Barabási-
Albert network [20], as b(k) ∼ k−η. From the cumulative
degree distribution, i. e.

P>(k) =
∫ ∞

k
P (k)dk ∼ k1−γ (4)

and the corresponding integrated betweenness, with
P>(b) ∼ b1−δ, it follows that η = (γ − 1)/(δ − 1) [21].
The social networks studied here display a similar scaling
law with an exponent η slightly departing from the the-
oretical prediction (see fig. 2A and table I). The strong
correlation between node load and large degree indicates
that hubs tend to dominate e-mail discussions in the OS
community.

In a previous work [34], we have studied different cen-
trality measures for OS networks, including node outde-
gree and strength. In a weighted network, s = 〈w〉k when
there is no correlation between degree k and strength s
and 〈w〉 is the average link weight. On the other hand, in
the presence of correlations we will have s(k) ∼ kβ with
β > 1. Indeed, the latter is the case for OS networks, in-
dicating that node strength is a better indication of node
centrality than raw node degree. In the following section
we will interpret this correlation in terms of a rich-club
ordering of the OS network.

IV. CORRELATIONS AND RICH-CLUB
PHENOMENON IN OS NETWORKS

The above measurements provide a global picture of
OSN but also suggest the presence of a two-level under-
lying structure, i.e., hubs and periphery nodes. In order
to reveal such organization, we need to consider correla-
tion measures among nodes having different numbers of
links. We can detect the presence of node-node correla-
tions by measuring the average nearest-neighbors degree:

knn(k) =
∑

k′
k′P (k|k′) (5)

where P (k|k′) is the conditional probability of having
a link attached to nodes with degree k and k′. Here, the

Figure 2: (A) Average betweeness centrality scales with degree 〈b(k)〉 ∼ kη with η ≈ 1.59 for the
Python OS community. This exponent is close to the theoretical prediction ηBA ≈ (γ −
1)/(δ − 1) = 1.70. (B) Cumulative distribution of undirected degree P>(k) ∼ k−γ+1 with
γ ≈ 1.97. (C) Cumulative distribution of betweeness centrality P>(b) ∼ b−δ+1 with δ ≈ 1.57
for b > 102.

traffic generated by the OS community. The undirected degree distribution is roughly a power-law
P (k) ∼ k−γ with γ ≈ 2 (see fig. 2B). However, P (k) displays a hump at some intermmediate degree
kc (see fig. 2B). The hump suggests a two-level classification of nodes in the OS network: periphery
nodes with few connections having k < kc and hub nodes having k > kc. This desviation might be
an indication of a rich-club ordering in the OS network (see below).

In order to understand the role played by hubs in OS networks, we have measured the betweeness
centrality bi (or node load [8]), i.e. the number of shortest paths passing through the i-th node [9].
Betweeness centrality displays a long tail P (b) ∼ b−δ with an exponent δ between 1.3 and 1.8 (see
table I and also fig. 2C). It was shown that betweeness centrality scales with degree in the Internet
autonomous systems and in the Barabási-Albert network [11], as b(k) ∼ k−η. From the cumulative
degree distribution, i. e.

P>(k) =
∫ ∞

k
P (k)dk ∼ k1−γ (3)

and the corresponding integrated betweenness, with P>(b) ∼ b1−δ, it follows that η = (γ−1)/(δ−1)
[12]. The social networks studied here display a similar scaling law with an exponent η slightly de-
parting from the theoretical prediction (see fig. 2A and table I). The strong correlation between node
load and large degree indicates that hubs tend to dominate e-mail discussions in the OS community.

3 Rich-clubs

In order to discover if some programmers are more significant than others we define a weighted
rich-club coefficient Φ(Sk, k) as follows:

Φ(Sk, k) =
WS(k)

ES(k)〈w〉
(4)
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Figure 3: Plot of the weighted rich-club coefficient Φ(S, k) against node degree k for the Python OS
network. There is a significant deviation for k > 102 that signals the rich-club ordering for
this particular community. The subgraphs show the k-scaffolds or the predicted rich-clubs
for different degrees k > 100. Line thickness indicate the weight attached to the link.
We can appreciate how three nodes have a much more stronger internal interaction (i.e.,
exchange a larger number of e-mails) than with the rest of nodes.

where ES(k) depicts the number of edges in the k-scaffold of the OS network, 〈w〉 = 1/E
∑

ij wij

is the average edge weight for the full network, E is the total number of edges, and WS(k) =∑
i,j∈S(k) wij is the sum of edge weights linking nodes in the k-scaffold subgraph [13]. The coefficient

signals any deviation from an homogenous distribution of weights in the k-scaffold. When weights are
distributed at random then both the numerator and denominator will be the same and Φ(S, k) ≈ 1.
However, it is easy to see that inhomogeneities in the weight distribution among edges (i.e., when
large weights are clustered in the edges of some connected subgraph) yield Φ(S, k) � 1. This seems
to be the case for OS networks (see fig. 3) where a dramatic growth of Φ(Sk, k) is observed when the
core set of programmers is reached. Such divergence clearly reveals the non-homogeneous nature of
the OSN, where a large fraction of e-mails flow through a few OS hubs.

4 Predictive social network simulation model

We present a top-down model that predicts the evolution and dynamics of the OS network, including
the (undirected) degree distribution P (k) and measurements of local correlations (see fig.4C, fig.4D,
and fig.4E). This model is motivated by three empirical observations: (i) there is a non-lineal re-
lationship between node strength and degree (previouly reported in [18]). In a related paper, this
relationship has been explained with a betweenness centrality model [14]. (ii) Betweenness centrality
strongly correlates with node strength (see fig. 4A). (iii) OS networks have a rich-club core (see
above). The rich-club indicates a characteristic scale in the system that emerges from an external
reinforcement of core members’ activities.

Core members will be more frequently e-mailed because of their importance. Key agents keep
the community as a coherent system. In this context, agents exploit social cues to evaluate one
another’s social status [15]. A natural surrogate of social status is the number of e-mails posted (and
received) by the member, i.e., node strength si (see section II). Members earning high social status
are arguably the most visible and thus, they will be accessed much more frequently [16]. These key
members have a global picture of the whole system, instead of being aware of just some specific parts
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Figure 4: Social network simulation (A) Linear correlation between node strength si and betweeness
centrality (or node load) bi in the Python community. The correlation coefficient is 0.99.
This trend has been observed in all communities studied here. (B) Estimation of α in the
TCL community (see text). (C) Cumulative degree distribution in the simulated network
(open circles) and in the real community (closed squares). All parameters estimated from
real data: N = 215, m0 = 15, 〈m〉 = 3 and α = 0.75. (D) Scaling of average neighbors
degree vs degree in the simulated network (open circles) and in the real social network
(closed squares). There is very good overlap between model and data for large k. (E)
Rendering of the simulated OS network Ω to be compared with the OS network GTCL in
fig. 1B.

of it. Members having a deeper knowledge of the overall system’s architecture are likely to process
high amounts of information. If we think in terms of agents in a network, we should expect them to
canalize information flowing from many different parts of the network [17].

Taking into account the above, the algorithm for evolving the (undirected) social network Ω =
(V,L) consists of the following stages: (i) The system starts (as in real OS systems) from a small
fully-connected network of m0 members. (ii) A new member j joins the social network at each time
step. The new member reports a small number of an average 〈m〉 new e-mails (iii) For each new
e-mail, we determine the target node by a non-local preferential attachment rule. The probability
that new member j sends an e-mail to an existing member i is proportional to node betweenness bi,
or alternatively, to the node strength si

The networks generated with the previous model are in very good agreement to real OS networks.
For example, fig. 4 compares our model with the social network of TCL software community.

5 Conclusion

Our analysis shows that open source communities are closer to the Internet and communication
networks than to other social networks (e.g., the network of scientific collaborations). The social

7



networks analyzed here are dissasortative from the topological point of view and assortative when
edge weights are taken into account. This is consistent with the absence of topological rich-club
that is nonetheless detected when link weights are taken into account. The rich-club phenomenon in
OS networks seems to be related to a pattern of non-local evolution. Such a non-local component
appears to be related with the presence of a core of programmers that make decisions based on a
global view of the system. Core programmers would both introduce a top-down control and receive
a large amount of e-mail traffic from secondary members. Based on these ideas, we have presented
a model that predicts many global and local social network measurements of the OS network.
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