Information Society
Technologies

Project Number 001907

DELIS
Dynamically Evolving, Large-scale Information Systems

Integrated Project

Member of the FET Proactive Initiative Complex Systems

Deliverable D5.2.2

Optimal Strategies for the Collective
Construction of Efficient
Information-Processing Webs

Dynamically|Evolving,/Large-scale Information Systems

Start date of the project:
Duration:

Project Coordinator:

Due date of deliverable:
Actual submission date:

Dissemination level:

Work Package 5.2:

Participants:

Authors of deliverable:

January 2004
48 months

Prof. Dr. math. Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute, University of Paderborn, Germany

December 2005
January 2006

PU — public

Evolved Tinkering and Degeneracy as Engineering Concepts

Universtitat Pompeu Fabra (UPF), Barcelona, Spain
Universita di Bologna (UniBO), ltaly

Sergi Valverde (svalverde@imim.es)
Ricard V. Solé (ricard.sole@upf .edu)
David Hales (hales@cs.unibo.it)

Ozalp Babaoglu (babaoglu@cs.unibo.it)

Abstract

This report comprises the complete D5.2.2 deliverable as specified for workpackage WP5.2 in Subpro-
ject SP5 of the DELIS (Dynamically Evolving Large-scale Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, engineer and control large
evolving information systems. Increasingly the software development process is being viewed as an
interaction between several kinds of evolving network. Program code itself can be graphed as a
complex network evolution process at several levels of scale. Also, the programmers working on
code are embedded in social networks of developers centred around various projects. Within Open
Source development most of the social network evolution process is mediated via electronic support
systems rather than direct social contact which allows some degree of tracking of the evolution of
both networks (code and social). Can models be constructed that capture these processes? In this

deliverable we outline initial investigations in this areal.

"Most papers produced within DELIS are available from the DELIS website as DELIS Technical Reports. Where this
is the case references are appended with the DELIS Tech Report number in square brackets. This indicates the
paper was produced within the DELIS project, not some other project.

Contents

1 Introduction

2 Affiliation Networks

3 Social Simulation of programmer network formation

4 Summary

1 Introduction

Modern information systems are not just driven by humans but artificial computers also play an
important role in the resulting information dynamics. For instance, the Internet is a medium that
allows any pair of users to communicate, i.e. by e-mail. We can witness human-computer communi-
cation taking place in the Internet, where the computer is a remote service that sends the requested
information back to the user, i.e. www. In this case, the computer is driven by what is known as
software, or a sequence of stored machine instructions that indicates with precision the computer
what action to do next. In spite of the large body of common-sense practices, heuristics and method-
ologies used when writing a computer program, i.e., software engineering, it is relatively unknown
what are the actual mechanisms or rules employed by programmers [9]. At the moment, we cannot
give more than recommendations and we do not have any quantitative means to identify what the
best practices are. This situation urges the computer science and engineering community to find an
“intellectually rigorous, analytical, teachable design process to ensure development of systems we all
can live with” [5].

One of the consequences of this lack of scientific understanding about software design processes
is the impossibility to make reliable predictions about future developments. We would like to give
precise answers to questions like: what amount of effort is required to build a software system of a
given complexity? Or how should the social network of the software development team be structured
for optimum productivity? Frequent and undesirable cost overruns and schedule delays claims for
a dramatic increase in confidence levels associated with predictions. On the other hand, little can
be learnt from bad experiences because we lack a reference model that enables useful comparison
and allows us to evaluate the consequences of software change. Is it possible to give a mathematical
model predicting the software development process?

One approach to build this predictive framework exploits strong regularities (also called invariants)
found in the source code of software systems. The existence of these invariants reveals fundamental
principles of software design that, as such, enable accurate predictions. We have suggested that strong
constraints might be operating on top of artificial design processes [11, 13, 12]. Proving whether these
constraints really exist might be helpful when understanding what limitations influence software
development. For example, what structural configurations cannot be reached in the apparently huge
space of software design? In this context, we have found that computer programs written in C++
and Java display invariants in their global and local structure.

We have analyzed these invariants by studying networks representing software structures, where
network nodes and directed links represent software entities (i.e., classes, files, or subroutines) and
syntactical dependencies (i.e., inheritance, aggregation or use), respectively. An example of an ex-
ogenous invariant is the fractal structure displayed by software systems indicated by a highly het-
erogeneous distribution of connectivity between software modules [13]. It turns out that the best
path towards understanding the origin of software heterogeneity is modeling the design process itself.
Heterogeneity links processes of software change and software structure.

2 Affiliation Networks

Although many software architecture models have been proposed in literature, there is still a need
for connecting software designs with its development or evolutionary process. Structural complexity
might act as the medium connecting individual behavior and other high-level features of software
development, like social structure and the emergence of specialization. It has been argued that the
interaction between individuals may have some influence in the organization and structuring of the
source code. Distributed teams face pressing communication and coordination problems that can
be better solved if software is structured according to social organization [4] which, in turn, can be

Figure 1: (A) An affiliation network and its two one-mode projections: (B) co-author projection and
(C) co-citation network. Dark balls represent authors and light balls represent papers.
Both one-mode projections display correlations (i.e. they are highly clustered) even if the
association between authors and papers is made at random.

depicted with a social network.

This social dimension of software development can be properly addressed with the affiliation net-
work [15]. An association network is a bipartite graph having two different kinds of nodes. A typical
usage of affiliation networks in social sciences describes the simultaneous evolution of author and
paper citation networks (see fig. 1). Authors connect articles to one another in co-citation networks,
and articles link authors to one another in co-authorship networks. In our context, the two pre-
viously mentioned networks (software structure and social developer network) can be integrated in
a single and coherent co-evolving framework relating developers with their corresponding software
pieces. Here, the affiliation network maps developer tasks (i.e., design, coding or testing) between the
social network and the software network. We have built a software system (see fig. 2) that enables
us to recover (semi-automatically) and parse CVS log files reporting detailed software development
histories (sourceforge.net). A CVS log file provides the information required to recover the affiliation
network between developers and project files. Each entry in the CVS log file describes a file revision
indicating the modified /created/accessed project file, the name of the developer accessing this file
and a timestamp. At this moment, we have collected information about different open-source soft-
ware projects spanning different interests and developer communities (see table below). As a matter
of testing, we have also included a project with only just one developer (DCPlusPlus).

Project Revisions | Developers | Files
Apache 43698 78 1279
Mozilla 452101 546 28086
FreeBSD 363333 425 28056
OpenBSD 245470 195 33998
Xfree86 27710 21 1788
Inkscape 15423 25 1648
SDCC 9557 32 1318
Gaim 20047 30 767
DCPlusPlus | 5260 1 187

Table 1: Some examples of projects analysed. Very different numbers of developpers and activity
levels can be observed.

3 Social Simulation of programmer network formation

Recently, some researchers have begun to analyse the social support networks of open source devel-
opers which can be traced via weblogs, mailing lists and social networking websites [14]. From such
traces it has been possible to produce agent based social simulation models that appear to capture
some of the dynamics of project life-cycles.

In such models, essentially, programmers are seen as agents choosing projects in order to satisfy
their own individual needs but doing so collectively - such that no single programmer can make an
arbitrary change to a project but rather must make changes that are acceptable to most users and
developers (who may have different individual needs).

Agents move between projects in order to increase their individual fitness (how well the project
reflects their preferences). Projects with no developers left are effectively “dead” and do not progress.

Although at present we are studying this new work we feel that there are interesting parallels with
our existing sociologically inspired algorithms producing cooperation in Artificial Social Networks
[8].

Specifically, in these of models, which we have worked with extensively, agents move between
groups to improve their fitness - with empty groups dying and new groups forming. We have applied
such models to firm formation in artificial economies [10] and self-organising peer-to-peer networks
[10]. We have also conjectured that a variant of this same group-like selection process could be
operating to support the BitTorrent file-sharing protocol [3] in previously not fully comprehended
ways [6]. However, in both those cases we did not explicitly model an external social network
formation process separate from the tasks in hand - it would be interesting to consider this aspect
and it’s effect on such models in possible future work.

4 Summary

The problem of software development does not reside in technical issues (i.e., specific features of
programming languages) but in social aspects of software development. For example, bug location
and fixing is an important task in software development and consumes a large fraction of human
resources. Bugs are difficult (or even impossible) to remove because the nonlinear character of the
phenotype/genotype mapping. In fact, it can be shown that many dynamical properties of computer
programs can not be predicted from static information given by the program representation. However,
early studies on bug dynamics already suggested a link between software structure and dynamics
1, 2].

In this context, stochastic and generative models of software structure are a prerequisite for quan-
titative studies on software bug dynamics. We have started to model the simultaneous evolution of
the software network and the social network of developers. Only the quantitative characterization of
these affiliation networks will enable us to optimize software development processes.

References

[1] Challet, D. and Yann Le Du, (2003) Closed source versus open source in a model of software
bug dynamics, preprint cond-mat/0306511.

[2] Challet, D. and Lombardoni, A. (2004) Bug propagation and debugging in asymmetric software
structures. Physical Review E 70, 046109

[3] Cohen, B. (2003) Incentives Build Robustness in BitTorrent. Presented at the Ist Work-
shop on the Economics of Peer-2-Peer Systems, June 5-6, 2003, Berkley, CA. Available at:
http://www.sims.berkeley.edu /research /conferences/p2pecon/

A1 Evs D9 _ink scape' mat i dlat

Matric _— =
-mmin Mo — —
[z |2
T T-maod
ol I [-
Z-min T - = o —
[a |= - —

dallf!
hid

Letnnd] Migtrin | Lond Eventi | =
Eventlog = =
Foevisions |0 Rackaw |[! E_q—:—__-- ——
e |0 Rewst | Py | s | B —— - = = =
i = = = =5
J— —
Save Deltas. ., |
Save LiEL.. —
hng.. -
=
Ciaradert |
: [:H Cuantization —_— = —
pg:“mmhhm I Ensbia Quantization = =
® enkry [— = — =
Iriupdmm Enkry Count —=

Figure 2: An screenshot from our CVS analysis application. The CVS log file downloaded from
the project server is parsed by this application and the affiliation network is recovered.
We can see the developer-file affiliation network displayed in the right as an adjacency
matrix. Darker color indicates less file accesses (background is white for picture clarity).
Columns in this matrix indicate developers in order of appearance (starting from left) while
rows indicate project files in order of appearance (starting from bottom). Side plots on the
margins of the matrix display the marginal cumulative distributions for files and developers,
respectively.

[4]
[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

Conway, M. E. (1968) How Committees Invent?. Datamation, 14, 4, pp. 28-51

Freeman, P. and Hart, D. (2004) A science of design for software-intensive systems, Communi-
cations of the ACM (CACM), 47, 8, pp. 19-21.

Hales, D. and Patarin, S. (2005) Computational Sociology for Systems “In the Wild”: The Case
of BitTorrent. IEEE Distributed Systems Online, vol. 6, no. 7, 2005. [DELIS-TR-0204]

Hales, D. (2005) Emergent Group-Level Selection in a Peer-to-Peer Network. Proceedings of the
2nd European Conference on Complex Systems, Paris, Nov. 2005. [DELIS-TR-0200]

Hales, D. and Arteconi, S. (2005) Friends for Free: Self-Organizing Artificial So-
cial Networks for Trust and Cooperation. Submitted to IEEE Intelligent Systems Spe-

cial Issue on Self-management through self-organization in information systems. Available:
http://arxiv.org/abs/cs.MA /0509037. [DELIS-TR-0196]

Kemerer, C. F. and Slaughter, S. (1999) An Empirical Approach to Studying Software Evolution,
IEEE Trans. Software Eng. 25, 4, pp. 493-509.

Mollona, E. and Hales, D. (2005) Knowledge-Based Jobs and the Boundaries of Firms. Accepted
for publication in the Journal of Computational Economics. University of Bologna, Dept. of
Computer Science Tech. paper UBLCS-2005-14. [DELIS-TR-0230)]

Solé, R. Ferrer-Cancho, R. Montoya, J. M. and Valverde, S. (2002) Selection, Tinkering and
Emergence in Complex Networks, Complezity, 8, 1.

Solé, R. and Valverde, S. (2004) Information Theory of Complex Networks, in Networks: Struc-
ture, Dynamics and Function, Lecture Notes in Physics, Springer-Verlag.

Valverde, S. Ferrer-Cancho, R. and Solé, R. Scale-Free Networks from Optimal Design, Furo-
physics Letters 60, pp. 512-517

Wagstrom, P., Herbsleb, J., Carley, K. (2005) A Social Network Approach to Free/Open Source
Software Simulation. In Scotto, M. and Succi, G. (eds), Proceedings of the 1st International
Conference on Open Source Systems, Genova, 11th-15th July 2005.

Wasserman, S. and Faust, K. (1994) Social network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge.

