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Preface

This report comprises the complete D4.3.1 deliverable as specified for work-
package WP4.3 in Subject SP4 of the DELIS (Dynamically Evolving Large-
scale Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, en-
gineer and control large evolving information systems. These are often
arranged in the form of dynamic networks (for example: the Internet or
Peer-2-Peer applications running on-top of such physical infrastructure).

WP4.3 brings together a team of specialists in Game Theory, Evolution-
ary Economics and Organisational Science and Agent-Based Modelling.

The purpose of this report is to outline the relevant work and state-
of-the-art in each field (including limitations) with application to DELIS-
like systems and then to outline integrative on-going problems, ideas and
projects that bring these techniques together to advance the state-of-the-art.

In the following chapters we overview techniques and ideas from classical
game theory, evolutionary game theory, individual and agent-based compu-
tational modelling, and organisation science.

We indicate their limitations and propose on-going work to integrate
techniques to overcome some of those limitations. In this context we identify
some ambitious (yet realistic) long-term goals.

In this early (6 month) deliverable the participants in WP4.3 report on
planned and on-going collaborative and supportive projects and work.

The next scheduled deliverable for WP4.3 is at the 18 month stage.
This report can therefor be viewed as an outline of the on-going work

that will take place within WP4.3 over the next 12 months (though it should
not read as exhaustive or strict).
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Chapter 1

The game-theoretic approach

1.1 Classical Game Theory

Game theory can be defined as the study of mathematical models of conflict
and cooperation between intelligent rational decision-makers. Game theory
provides general mathematical techniques for analyzing situations in which
two or more individuals make decisions that will influence one another’s
welfare.

The object of study in game theory is the game, which is a formal model
of an interactive situation involving two or more individuals. The individu-
als involved in a game are called the players. Game theory generally makes
two basic assumptions about players: they are rational and they are intel-
ligent. A player is rational if he always chooses an action which gives the
outcome he most prefers, given what he expects his opponents to do. In
game theory, building on the fundamental results of decision theory, we as-
sume that each player’s objective is to maximize the expected value of his
own payoff, which is measured in some utility scale. A player is intelligent
if he knows everything that we know about the game and he can make any
inferences about the situation that we can make.

1.1.1 History of Game Theory

Some game-theoretic ideas can be traced to the 18th century, but the major
development of the theory began in the 1920s with the work of the math-
ematician Emile Borel and the polymath John von Neumann. A decisive
event in the development of the theory was the publication in 1944 of the
book Theory of Games and Economic Behavior by John von Neumann and
Oskar Morgenstern. This book provided much of the basic terminology and
problem setup that is still in use today.

In 1950, John Nash demonstrated that finite games always have an equi-
librium point, at which all players choose actions which are best for them
given their opponents’ choices. This central concept of noncooperative game
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theory has been a focal point of analysis since then. In the 1950s game-
theoretic models began to be used in economic theory and political science,
and psychologists began studying how human subjects behave in experimen-
tal games. Since the 1970s, it has driven a revolution in economic theory.
Additionally, it has found applications in sociology and psychology, and es-
tablished links with evolution and biology. Subsequently, game theoretic
methods have come to dominate microeconomic theory and are used also
in many other fields of economics and a wide range of other social and
behavioural sciences.

Game theory received special attention in 1994 with the awarding of the
Nobel prize in economics to John Nash, John Harsanyi and Reinhard Selten.

At the end of the 1990s, a high-profile application of game theory has
been the design of auctions. Prominent game theorists have been involved
in the design of auctions for allocating rights to the use of bands of the
electromagnetic spectrum to the mobile telecommunications industry.

1.1.2 Game-Theoretic Models

Games can be described formally at various levels of detail. Once we define
the set of players, we may distinguish between between two types of models:
those in which the sets of possible actions of individual players are primitive
and those in which the sets of possible joint actions of groups of players is
primitive. Models of the first type are referred to as noncooperative, while
those of the second type are referred to as cooperative or coalitional.

A strategic (or, normal form) game is a model of a situation in
which each player chooses his plan of action once and for all, and all players’
decisions are considered to be made simultaneously (that is, when choosing
a plan of action each player is not informed of the plan of action chosen
by any other player). By contrast, the model of an extensive form game
specifies the possible orders of events; each player can consider his plan of
action not only at the beginning of the game but also whenever he has to
make a decision.

A game with perfect information models a situation in which the par-
ticipants are fully informed about each others’ moves, while in a game with
imperfect information the participants may be imperfectly informed.

1.1.3 Strategic-Form Games

Of the different forms for games that were introduced in the preceding sub-
section, the simplest conceptually is the strategic (or normal form) game.

Definition 1.1.1 A strategic game Γ = (N, (Ci)i∈N , (ui)i∈N ) consists of

• a finite set N of players
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• for each player i ∈ N a nonempty set Ci of allowable actions available
to player i. Ci is usually called the action set of player i.

• for each player i ∈ N a utility function ui : C → R.

Here C ≡ ×i∈NCi denotes the set of all possible combinations of strategies
(usually called pure strategies profiles or configurations) that may be
chosen by all the players.

Given any strategic game Γ = (N, (Ci)i∈N , (ui)i∈N ), a mixed strategy
for any player i is a probability distribution over Ci. We let ∆(Ci) denote the
set of all possible mixed strategies for player i. To emphasize the distinction
from mixed strategies, the actions in Ci are called pure strategies.

A mixed strategies profile is any vector that specifies one mixed strat-
egy for each player, so the set of all mixed strategy profiles is ×i∈N∆(Ci).
That is, p ≡ (

p1, . . . , p|N |
)

is a mixed strategy profile in ×i∈N∆(Ci) iff, for
each player i and each pure strategy ci in Ci, pi(ci) ∈ IR≥0, is the probability
that player i would choose ci under p, and so

∑
ci∈Ci

pi(ci) = 1, ∀i ∈ N .
Although we may be uncertain about what profile of pure strategies will

be chosen by players when Γ is played, Bayesian decision theory guarantees
that there exists some probability distribution over the set of pure strategy
profiles C = ×i∈NCi that quantitatively expresses our beliefs about the
players’ strategy choices. Furthermore, as we assume that all the players
choose their strategies simultaneously, our beliefs about the game should
correspond to some mixed strategies profile p ∈ ×i∈N∆(Ci).

For any mixed strategies profile p, let ui(p) denote the expected utility
that player i would get when the players independently choose their pure
strategies according to p:

ui(p) =
∑
c∈C

P (p, c) · ui(c), ∀i ∈ N ,

where, P (p, c) ≡ ∏
j∈N pj(cj) is the occurrence probability of any configu-

ration c ∈ C wrt p.
For any player i ∈ N and any mixed strategy τi ∈ ∆(Ci), we let p−i⊕ τi

denote the mixed strategies profile in which the i-component is τi and all
other components are as in p. Similarly, for any ci ∈ Ci, we let p−i ⊕ ci

denote the mixed strategies profile in which the i-component is the prob-
ability distribution ei which assigns probability equal to 1 to the strategy
ci ∈ Ci and probability equal to 0 to each other strategy in Ci, and all other
components are as in p. Finally, we denote by C−i ≡ ×j $=iCi the cartesian
product of the action sets of all players but for i.

6



1.1.4 Solution Concepts for Strategic Games

Nash Equilibrium

The most commonly used solution concept in game theory is that of Nash
equilibrium. This notion captures a steady state of the play of a strategic
game in which each player holds the correct expectation about the other
players’ behaviour and acts rationally. A Nash equilibrium recommends a
strategy to each player, so that no player can improve upon its own strat-
egy by moving unilaterally to some other strategy, ie, provided that the
other players adopt the strategy indicated by the equilibrium. Since the
other players are also rational, it is reasonable for each player to expect its
opponents to follow the recommendation as well.

Definition 1.1.2 A pure strategies profile c ∈ C is a Pure Nash Equi-
librium (PNE) of the strategic game Γ = (N, (Ci)i∈N , (ui)i∈N ) iff

ui(c) ≥ ui(c−i ⊕ di), ∀i ∈ N, ∀di ∈ Ci .

Definition 1.1.3 A mixed strategies profile p is a Nash Equilibrium
(NE) of the strategic game Γ = (N, (Ci)i∈N , (ui)i∈N ) iff

ui(p) ≥ ui(p−i ⊕ τi), ∀i ∈ N, ∀τi ∈ ∆(Ci) ,

or equivalently, iff

∀i ∈ N, ∀ci ∈ Ci, pi(ci) > 0 ⇒ ci ∈ arg maxdi∈Ci
ui(p−i ⊕ di) ≡ BRi(p) .

The set of actions BRi(p) ⊆ Ci is called the best replies set for player
i ∈ N wrt p. A NE p for which ∀i ∈ N, {pi} = BRi(p) is a strict Nash
Equilibrium, and clearly has to be a PNE.

The set of PNE of a strategic game is a subset of its set of Nash equilibria.
There exist games for which the set of PNE is empty. There are also games
for which the set of Nash equilibria is empty. However, every game in which
each player has finitely many strategies has at least one Nash equilibrium,
as the general existence theorem of John Nash shows:

Theorem 1 (Nash, 1951) Given any finite game Γ in strategic form, there
exists at least one equilibrium in ×i∈N∆(Ci).

Correlated Equilibrium

In a correlated equilibrium, someone tosses a coin and gives each player
partial information about the result, in the form of a recommendation of
how to play. An equilibrium exists in that no player has an incentive to
disobey the recommendation. Formally:
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Definition 1.1.4 A correlated equilibrium p of the strategic game Γ =
(N, (Ci)i∈N , (ui)i∈N ) is a distribution on the joint strategy set ×i∈NCi such
that ∀i, ∀t *= t′ ∈ Ci∑

c−i∈C−i

p(c−i ⊕ t) · ui(c−i ⊕ t) ≥
∑

c−i∈C−i

p(c−i ⊕ t) · ui(c−i ⊕ t′) .

That is, for each recommended strategy t for player i, this player has no
incentive to deviate to any other strategy t′ *= t.

A Nash equilibrium is simply a correlated equilibrium where p is a product
of independent distributions for each player. So Nash’s theorem implies that
a correlated equilibrium exists in every finite game.

1.1.5 Complexity Issues

Although Nash’s Theorem guarantees the existence of at least one Nash
equilibrium in every finite game, the computation of Nash equilibria has been
long observed to be difficult and it is one of the most important algorithmic
problems for which no polynomial-time algorithms are known.

While the question of how complex it is to construct a Nash equilibrium
remains wide open, important concrete advances have been made in deter-
mining the complexity of related questions. For example, 2-person zero-sum
games (ie, when in each pure strategy profile the utilities of the two players
sum up to zero) can be solved using linear programming in polynomial time
[59]. In [21] it was shown that the problems of (1) determining whether a
Nash equilibrium with certain properties exists and (2) counting the number
of Nash equilibria are NP−hard.

1.2 Nash on the Network

A key problem in network management is that of routing traffic in order to
optimize network performance. Given the traffic to be routed, we wish to
find a routing that optimizes certain performance parameters, such as the
average travel time (ie, total latency of the whole traffic), the maximum delay
experienced over all users (ie, maximum delay among the users) or the max-
imum delay experienced over all edges (ie, maximum congestion occurring
in the network). Solutions to these kind of problems can be extremely hard
since the latency experienced by each edge usually depends on the amount
of traffic traveling through that edge. Moreover, in large-scale or evolving
networks, such as the Internet, there is no authority possible to employ a
centralized traffic management. Besides the lack of central regulation even
cooperation of the users among themselves may be impossible due to the
fact that the users may not even know each other. A natural assumption in
the absence of central regulation and coordination is to assume that network

8



users behave selfishly and aim at optimizing their own individual welfare. In
order to understand the mechanisms in such non-cooperative network sys-
tems, it is of great importance to investigate the selfish behaviour of users
and their influence on the performance of the entire network.

Since each user seeks to determine the shipping of its own traffic over the
network, different users may have to optimize completely different and even
conflicting measures of performance. A natural framework in which to study
such multi-objective optimization problems in a non-cooperative network is
(non-cooperative) game theory. We can view network users as independent
agents participating in a non-cooperative game and expect the routes chosen
by users to form a Nash equilibrium in the sense of classical game theory.
The theory of Nash equilibria [68] provides us with an important mathe-
matical tool in analyzing the behaviour of selfish users in non-cooperative
networks: a Nash equilibrium is a state of the system such that no user can
decrease its individual cost by unilaterally changing its strategy. Users self-
ishly choose their private strategies, which in our environment correspond
to paths (or probability distributions over paths) from their sources to their
destinations. When routing their traffics according to the strategies chosen,
the users will experience an expected latency caused by the traffics of all
users sharing edges. Each user tries to minimize its private cost, expressed
in terms of its expected individual latency. This in general contradicts the
goal of optimizing the social cost which measures the global performance of
the whole network in terms of eg the average delay experienced by the users
or the maximum delay experienced over all users.

Many interesting problems arise in such environments. A first one is the
problem of analyzing the degradation of the global performance due to the
selfish behaviour of its users, often termed as the coordination ration or
the price of anarchy [73]. A second problem deals with the existence and
tractability of pure Nash equilibria in non-cooperative networks. A third
problem is the Nashification problem, i.e. the problem of converting any
given non-equilibrium routing into a Nash equilibrium without increasing
the social cost.

1.2.1 The Price of Anarchy

Koutsoupias and Papadimitriou [55] introduced the question of how far can a
Nash equilibrium, obtained by selfish behaviour, be from the optimal routing?
They only considered networks with a single pair of source and sink, with
m parallel links between the two, and linear latency functions for each edge.
In their proposed model, they assume that n agents have each an amount
of traffic wi, i = 1, . . . , n to send from the origin to the destination. The set
of pure strategies for agent i is therefore {1, . . . ,m}, and a mixed strategy
is a distribution on this set.

Systems of parallel links, albeit simple, represent an appropriate model
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for several, diverse networking problems. Consider, for example, broadband
networks where bandwidth is preallocated to different virtual paths that do
not interfere; thus, these paths result effectively in a system of parallel links
between source/destination pairs. As a second example, consider a multime-
dia network with several servers that are shared by the network customers;
each customer distributes its applications among the servers, while compet-
ing with the other customers on the common available resources. Modeling
each server as a link, the parallel links model fits well such a framework.

As mentioned above, [55] initiated the study of the price of anarchy
and showed the following results for networks consisting of m parallel links.
It was shown that for two identical links the price of anarchy is exactly
3
2 . For two links (not necessarily identical, that is, with possibly different
speeds) the price of anarchy is φ = 1+

√
5

2 . For m identical links the price of
anarchy is Ω( log m

log log m) and it is at most 3+
√

4m lnm. Finally, it was shown
that the price of anarchy for any number of tasks and m (not necessarily
identical) links is O(

√
s1
sm

∑m
j=1

sj

sm

√
log m), where sj is the speed of link j,

and s1 ≥ s2 ≥ · · · ≥ sm.
Mavronicolas and Spirakis [62] greatly extended some of the bounds

above and showed the following results in the so-called fully-mixed model,
which is a special class of Nash equilibria in which each user assigns non-zero
probability to each and every link. They showed that for m identical links
in the fully-mixed Nash equilibrium the price of anarchy is Θ( log m

log log m). For
m (not necessarily identical) links and n identical weights in the fully-mixed
Nash equilibrium, if m ≤ n, then the price of anarchy is Θ( log n

log log n).
Following this line of work, Czumaj and Vöking [25] gave an exact de-

scription of the price of anarchy depending on the number of links and the
ratio of the speed of the fastest link over the speed of the slowest link. The
main result of [25] is that the price of anarchy on m parallel links of possibly
different speeds is Θ( log m

log log log m).
[24] presented a thorough study of the case of general, monotone delay

functions on parallel links, with emphasis on delay functions from queuing
theory. Unlike the case of linear cost functions, they showed that the price
of anarchy for non-linear delay functions in general is far worse and often
even unbounded.

[33] studied the case of a network with a distinguished source – destina-
tion pair (s, t), where each s− t path has length exactly l and each node lies
on an s− t path. It was shown that the price of anarchy when the number
of resources (links) is m and resource delays equal to their loads is at most
8e( log m

log log m + 1).
In [77] the price of anarchy in a multi-commodity network game among

infinitely many users each of negligible demand was studied. The social cost
in this case is expressed by the total delay payed by the whole flow in the
system. For linear resource (link) delays, the price of anarchy is at most 4

3 .
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For general, continuous, non-decreasing resource delay functions, the total
delay of any Nash flow is at most equal to the total delay of an optimal flow
for double flow demands.

In the subsequent paper [78] it was proved that for the same setting, it is
actually the class of allowable latency functions and not the specific topology
of a network that determines the price of anarchy in the corresponding game.

For recent treatments see [60] [35], [36], [34].

1.2.2 Pure Nash Equilibria and Nashification

A natural question arising in game theory is what kind of games possess
a pure Nash equilibrium and under which circumstances can such an equi-
librium be found in polynomial time. Rosenthal [76] introduced a class of
games, called congestion games, in which each player chooses a particular
combination of resources (called an action) out of a set of allowable actions
for it, constructed from a basic set of primary resources for all the players.
The delay associated with each primary resource is a non-decreasing func-
tion of the number of players who choose it, and the total delay received
by a player is the sum of the delays associated with the primary resources
he chooses. Each game in this class possesses at least one PNE. This result
follows from the existence of a real-valued function (an exact potential [67])
over the set of pure strategies profiles with the property that the gain of a
player unilaterally shifting to a new strategy is equal to the corresponding
increment of the potential function.

Formally, a congestion game consists of a set N of n players, a finite
set E of resources, and the action set (ie, the pure strategies available) of
player i is Si ⊆ 2E \ ∅. We are also given non-decreasing delay functions
de : {0, 1, . . . , n} /→ IR≥0 for all the primary resources e ∈ E. The players’
payoffs in this game are computed as follows. Let s = (s1, . . . , sn) be a
configuration of the players (ie, a pure strategies profile) and let fs(e) =
|{i : e ∈ si}|. Then ui(s) = −∑

e∈si
de(fs(e)).

A congestion game in which all users have the same payoff function and
the same action set is called symmetric. In a network congestion game
the action sets Si are presented as paths in a network. We are given a di-
rected network G = (V,E), with the edges playing the role of resources, two
nodes si, ti ∈ V for each player i and a delay function over the set of edges.
The subset of E available as the action set of player i is the set of all paths
from si to ti. Then we refer to a multicommodity network congestion
game. If all origin-destination pairs of the users coincide with a unique pair
(s, t) we have a single-commodity network congestion game and then
all users share the same action set. In a weighted congestion game we
allow the users to have different demands for service, and thus affect the
resource delay functions in a different way, depending on their own weights.

As already mentioned, the class of (unweighted) congestion games is
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guaranteed to have at least one PNE. In [30] it is proved that a PNE for any
unweighted single-commodity network congestion game can be constructed
in polynomial time, no matter what resource delay functions are consider (as
long as they are non-decreasing with loads). On the other hand, it is shown
that even for a symmetric congestion game or an unweighted mlticommod-
ity network congestion game, it is PLS-complete to find a PNE, though it
certainly exists.

For the special case of single-commodity (parallel-edges) network con-
gestion games where users have varying demands, it was shown in [32] there
is always a PNE which can be constructed in polynomial time. It was also
shown that it is NP−hard to construct the best or the worst PNE.

[64] deals with the problem of weighted parallel-edges congestion games
with user-specific costs: each allowable action of a user consists of a single
resource and each user has its own private cost function for each resource. It
is shown that all such games involving only two users, or only two possible
actions for all the users, or equal delay functions, always possess a PNE.
On the other hand, it is shown that even a single-commodity, 3-user, 3-
actions, weighted parallel-edges congestion game may not possess a PNE
(using 3-wise linear resource delays).

[31] deals with the problem of Nashification, ie, how to convert any given
non-equilibrium routing into a PNE without increasing the social cost. An
efficient algorithm for the Nashification problem allows to compute a Nash
equilibrium with low social cost by first computing an appropriate non-
equilibrium routing with known algorithms for the scheduling problem and
then converting this routing into a Nash equilibrium. One way to nashify
a configuration, is to perform a sequence of greedy selfish steps. A greedy
selfish step is a user’s change of its current pure strategy to its best pure
strategy with respect to the current strategies of all other users. [31] presents
an algorithm which nashifies any pure routing in a weighted parallel-edges
congestion game with resource delays identical to their loads, by performing
such selfish greedy steps. However, this process may take exponential time
even if the edges have identical capacities.

In [33] it is proved that even for a weighted single-commodity network
congestion game with resource delays being either linear or 2-wise linear
functions of the loads, there may be no pure Nash equilibrium. It is also
shown that there exist weighted single-commodity network congestion games
which admit no exact potential function, even when the resource delays are
identical to their loads. Nevertheless, it is proved that for the case of a
weighted multicommodity network congestion game with resource delays
proportional to their loads (ie, ∀e ∈ E, de(x) = ae ·x : ae ≥ 0 is a constant),
at least one PNE exists and can be computed in pseudo-polynomial time.
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1.3 Challenges: Adaptive and Dynamic Systems

As already stated, classical (ie, static) game theory mostly deals with com-
pletely rational individuals who are engaged in a given interaction (a “game”)
with other individuals (co-players) and have to adopt strategies (for select-
ing among a set of allowable actions) that maximize their own (exogenously
fixed) payoff function, given the strategies of their co-players. Of course the
value of each player’s payoff is dependent on the other players’ strategies for
choosing their own actions.

The initial goal of game theorists was to determine the major principles
of rational behaviour, by means of thought experiments involving fictitious
players who were assumed to know such a theory and to know that their
equally fictitious co-players would use it. At the same time, it was ex-
pected that rational behaviour would prove to be optimal against irrational
behaviour. It turned out that this was too much.

When the “trembling hand” dogma came into the scene things changed
dramatically. Now a perfect strategy should take into account that the co-
players, instead of taking the perfect strategic decisions, occasionally do the
wrong thing. The question is how often this “occasional” behaviour appears.
From allowing an infinitesimal margin of error to assuming that the faculties
of the players are limited (implying bounded rationality) it takes only a small
step. But, as long as the players are no longer constrained to be rational
(due to their limited faculties), the can learn, adapt and evolve.

Thus, the new major task of game theory became the description of
the dynamics of model games defined by strategies, payoffs and adaptation
mechanisms. Evolutionary game theory deals with an entire (typically large)
population where all individuals are “destined” to adopt some fixed strategy
(usually considered as a behavioural type). Strategies with higher payoff
than the average payoff given the current state of the population (ie, types
with larger than average fitness) are expected to spread within the popula-
tion (by learning, copying successful strategies, inheriting strategies, or even
by infection). The frequencies of the types in the population thus change
according to their payoffs, which in turn depend on the frequencies of the
other types in the population. Observe that in this case it is the different
types of behaviour (and not the individuals) that are the actual players par-
ticipating in a kind of a repeated game. The subject of evolutionary game
theory is exactly the study of the dynamics of this feedback loop. A very
good presentation of evolutionary dynamics in strategic games, is in [51].
For a thorough study of evolutionary dynamics in extensive form games,
the reader is referred to [22].

Numerous paradigms for modeling individual choice in a large population
have been proposed in the literature. For example, if each player chooses its
own strategy so as to optimize its own payoff (“one against all others” sce-
nario) given the current population state (ie, other players’ strategies), then
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the aggregate behaviour is described by the best-response dynamics [61].
If each time an arbitrary user changes its strategy for any other strategy of
a strictly better (but not necessarily the best) payoff, then the aggregate be-
haviour is described by the better-response dynamics or Nash dynamics
[76]. In case that pairs of players are chosen at random and these players
engage in a bimatrix game (“one against one” scenario) whose payoff ma-
trix determines according to some rule the gains of the types adopted by
these two players, then we refer to imitation dynamics, the most popular
version of which is the replicator dynamics [81].

The proposed dynamical systems for describing evolutionary games, de-
spite their appealing and highly intuitive definitions, have some strong weak-
nesses. For example, the best/better-response dynamics admit multiple so-
lution trajectories from a single initial point, whose terminal (rest) points
vary significantly in their aggregate performance. On the other hand, the
replicator dynamics admits trajectories, whose rest points are not necessar-
ily Nash equilibria (eg, when all the users of a population choose exactly the
same strategy, even if this strategy is strictly dominated, there is nothing to
imitate – this is a general weakness of the imitation dynamics).

A typical way out of such situations is to introduce small amounts of
noise to the underlying models. For example, we may add (small) payoff
perturbations to the optimization dynamic models, or we may add occa-
sional arbitrary behaviour to the model of replication. Of course, such mod-
ifications create new difficulties: for the optimization models the rest points
may now be slightly away from the Nash equilibria, while the replication
models may admit some oscillation phenomena.

Since evolutionary game theory is a dynamical process (hopefully) end-
ing up in some equilibrium which may also demonstrate robustness against
invasion or infection (stability), we consider it as a self-organization process
in a very large population of entities that adopt some strategies representing
either computer programs trying to prevail in the market, or competing net-
work protocols, or viruses trying to spread all over the Internet. Thus the
prime concern of an algorist is to determine the principal rules defining the
(global or local) convergence to stable states, to propose computationally ef-
ficient algorithms for constructing such stable states, to be able to compare
the trajectories of two phenomenically different laws of motion, or even to
describe how the underlying infrastructure (eg, the network infrastructure
in which a virus might spread) is involved in the evolution of a population.
We comment here that our perspective has to do with strategic evolution,
ie, the evolution in time of the vector of the frequencies of the behavioural
types (ie, possible strategies) in the whole population, and not with tradi-
tional evolution (under the biological viewpoint) where the sub-populations
actually evolve in size.
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1.3.1 Evolutionary Stable Strategies

Consider a large population of players that encounter randomly chosen op-
ponents. We assume that there is a fixed set R = {ri}i∈[N ] of N primi-
tive actions of each player, as well as a set of n possible strategies (or be-
havioural types) P = {pj}j∈[n] ⊆ ∆(R) ≡

{
z ∈ [0, 1]N :

∑
i∈[n] zi = 1

}
,

which are nothing more than mixed strategies on R. If all players use the
same strict NE p ∈ P , then each individual deviating (unilaterally) from
this strategy will be definitely penalized. That is, dissident behaviour is
not spread. On the other hand, we cannot assume that every non-strict NE
is a proof against invasion by a minority, unless they encounter an evolu-
tionary stable population. To see this, consider an arbitrary non-strict NE
p ∈ P . For this equilibrium we know that at least one player i ∈ N has a
best-replies set that contains more than one strategies. All these strategies
seem equally profitable for i. Nevertheless, it may be the case that some of
them leads to an unstable state that will cause then other players to defect
to more profitable strategies for them, a.s.o.

An evolutionary equilibrium is a variant of the notion of Nash equilib-
rium, designed to model situations in which the players’ actions are deter-
mined by forces of evolution. Consider the case where the members of a
single population of organisms (ie, all individuals may adopt types of be-
haviour from the same set) interact with each other in a pairwise fashion. In
each encounter each organism has a type from the set P . The organisms do
not consciously choose behavioural types; rather, they either inherit them
from their forebears or these are assigned to them by mutation.

A type of behaviour in the population is said to be an evolutionary
stable strategy if whenever all members of the populations adopt it, no
dissident type can invade the population under the influence of natural se-
lection. So suppose for example that, when two individuals of some given
species meet, they play the game Γ = ({1, 2}, (R,R), (u1, u2)) that is sym-
metric, in the sense that the contending individuals have the same action
set R, and

u1(a, b) = u2(b, a) = U [a, b], ∀a, b ∈ R ,

for some N ×N−dimensional payoff matrix U . Here, an individual’s utility
represents some contribution to the reproductive fitness of the corresponding
type adopted by this individual. The following is a formal definition of an
evolutionary stable strategy:

Definition 1.3.1 In a large population in which behavioural types evolve
as above according to a symmetric two-player game Γ whose payoff matrix
represents the change in fitness of the different primitive actions from R, a
behavioural type p ∈ P is called an evolutionary stable strategy (ESS)
iff ∀q ∈ P \ {p}, ∃ε̄(q) > 0 : ∀δ ∈ (0, ε̄(q)),
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u1(q, δq + (1− δ)p) = qT U [δq + (1− δ)p]
< pT U [δq + (1− δ)p]
= u1(p, δq + (1− δ)p)

where, ε̄(q) is called the invasion barrier wrt to the invading type q.

The above definition states that the equilibrium strategy p should be
strictly better than any alternative strategy q when the frequency of q in
the population is sufficiently small (ie, there is a small positive probability
of meeting an individual who is using the alternative strategy q). It is well
known that not all symmetric two-player games possess an evolutionary
stable strategy. Indeed, even populations whose evolution is described by a
3× 3 symmetric game may not possess any ESS.

In the above, for simplicity, we gave the definition of an evolutionary
stable strategy in the context of a symmetric two-person game, but ESS
is defined for asymmetric games as well, or even in scenarios where the
evolution of the population is determined by broader conflicts of individuals,
rather than pairwise encounters of randomly chosen opponents.

An equivalent definition of the ESS (which is a straightforward corollary
of definition 1.3.1) is the following: A behavioural type p ∈ P is an ESS iff
∀q ∈ P \ {p} the following two conditions hold:

(I) [Equilibrium Condition] qT Up ≤ pT Up
(II) [Stability Condition] qT Up = pT Up⇒ qT Uq < pT Uq

Condition (I) demands that p is a Nash equilibrium for the bimatrix
game determining the law of motion (no invader q ∈ P can do better than
the resident p ∈ P , against the resident), while condition (II) states that,
in case that an invader does equally well with the resident against the resi-
dent, then the resident must be strictly better than the invader, against the
invader. The following theorem provides a simple (yet inefficient, due to the
possibly too many types of behaviour) test whether a specific strategy p is
an ESS:

Theorem 2 (Hofbauer & Sigmund, Theorem 6.4.1 [51]) The strategy
p is an ESS iff

∀q *= p, pT Uq > qT Uq

in some neighbourhood of p.

For example, consider a large population of individuals that demonstrate
any combination of a hawkish or a dovish behaviour. A hawk is aggressive
and fights against its opponents until either the opponent retreats or they
are both injured. On the contrary, a dove is willing to compromise (when
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...Hawk and gets ...Dove and gets
Hawk meets... G−C

2 G
Dove meets... 0 G

2

Table 1.1: The payoff matrix of the Hawk-Dove evolutionary game. The
total gain from each duel is G, while the injury deficit (between hawks) is
C > G. When two hawks contend, they share the loss in fitness they cause
to their type, while a hawk against a dove gets all the gain for its own type.
Finally, two contending doves share the gain peacefully, without harming
each other.

the opponent is another dove) or retreat immediately (when it faces a hawk
that never compromises). The matrix determining the change in fitness by
pairwise encounters is the following: This game is easily shown to have a
unique ESS p̂ =

(
p̂h = G

C , p̂d = 1− G
C

)
, since ∀p = (ph, 1−ph) *= p̂, p̂T Up−

pT Up = (G−C·ph)2

2C > 0.

Population Games

Up to this point we assumed that the success of a behavioural type depends
on the outcome of pairwise encounters with randomly chosen opponents.
This need not always be the case. Indeed, in many examples the success of
a type does not always depend only on the type of the opponent, but also on
the frequencies of all types in the whole population. The ESS theory can be
extended to such cases as well. Suppose that the payoff functions ui depend
on the vector m ∈ ∆(R) of expected frequencies of the primitive actions
ri ∈ R in the population. The expected frequency of each of the primitive
actions is just the expected number of individuals adopting the specific action
(given the exact frequencies vector x ∈ ∆(P ) of the behavioural types in the
whole population) over the total population size. That is, ∀i ∈ [N ], mi =∑

j∈[n] pj(i) · xj = (xT P )i, where P = [p1,p2, . . . ,pn]T also denotes the
n×N matrix each row of whom is a different behavioural type. The strategy
mix of the subpopulations m ∈ ∆(R) can also be seen as the average
behavioural type. Since a pj−strategist adopts each primitive action
ri ∈ R with probability pj(i), his payoff will be given by∑

i∈[N ]

pj(i) · ui(m) = pj · u(m) ,

where u(m) ≡ (u1(m), . . . , uN (m)). In accordance with the definition of an
ESS given in theorem 2, we define the notion of a local ESS:

Definition 1.3.2 p ∈ P is a local ESS if p · u(q) > q · u(q) holds for all
q *= p in some neighbourhood of p in P .
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It is quite interesting that now many ESS may coexist in the interior of
∆(R), while there could only be at most one ESS when the individuals were
involved only in pairwise encounters.

1.3.2 The Replicator Dynamics.

The evolutionary stable strategies are only one of the many alternatives to
describe stability in evolutionary games. Indeed, there have been proposed
many other notions of stability, differing in their implicit underlying dy-
namics. In certain situations, the underlying dynamics can be modeled by
a differential equation on the simplex ∆(R) = {z ∈ [0, 1]N :

∑
i∈[N ] zi = 1}.

The dynamic process, whose outcome an ESS is supposed to be, is the so
called replicator dynamics, a system of deterministic differential equations.
Unlike the case of an evolutionary stable strategy, each individual is now
associated with a pure strategy (ie, it chooses with certainty a specific prim-
itive action to take). The counterpart of a mixed strategy in this model
is a polymorphic population in which each primitive action is adopted by
different individuals in the population. Thus, the actual players of the game
are the primitive actions and not the individuals in the population.

Suppose that we split time in periods of length τ ∈ (0, 1] and in each pe-
riod, a fraction τ of the whole population gives birth, with each i−strategist
(ie, an individual that adopts the primitive action ri) giving birth to fi(x)
offspring who adopt the same action. The function fi : ∆(R) /→ IR≥0 is
the fitness function of the primitive action ri. The expected number of
i−strategists at time t + τ is given by Ni(t + τ) = Ni(t) + τNi(t)fi(x(t)),
while the total population size is N(t+ τ) =

∑
i∈R[Ni(t)+ τNi(t)fi(x(t))] =

N(t) + τ
∑

i∈[n] Ni(t)fi(x(t)). The change in frequencies of the primitive
actions in the whole population can then be described as follows: ∀i ∈ [n],

xi(t + τ) ≡ Ni(t + τ)
N(t + τ)

=
Ni(t) · [1 + τfi(x(t))]

N(t) + τ
∑

j∈[n] Nj(t)fj(x(t))

=
xi(t) · [1 + τfi(x(t))]

1 + τ
∑

j∈[n] xj(t)fj(x(t))

=
xi(t) · [1 + τfi(x(t))]

1 + τ f̄(x(t))
⇒

xi(t + τ)− xi(t)
τ

=
xi(t) · [fi(x(t))]− f̄(x(t))

1 + τ f̄(x(t))

where f̄(x) ≡ ∑
j∈[n] xj · fj(x) = xT · f(x) is the average fitness in the

population and f(x) ≡ (f1(x), . . . , fn(x)) is the fitness vector. By allowing
τ → 0 we get from this discrete time model the following replicator equation:

ẋi(t) =
d

dt
xi(t) = xi(t)[fi(x(t))− f̄(x(t))] (1.1)
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Observe that the rate of increase ẋi
xi

of each behavioural type ri ∈ R
may be seen as a measure of evolutionary success. In that case, it is clear
that the replicator equation is the natural dynamics reflecting the evolution
of the frequencies vector in the population over time.

Replicator Dynamics vs stability

Having fixed the dynamics for the description of our evolutionary system,
the next question is what one can learn from the replicator equation wrt
stability and equilibrium notions. A crucial observation that also holds for
a more general family of dynamics that include the replicator dynamics,
called the imitation dynamics, is that the support of the population re-
mains always the same: no initially zero-frequency type may ever be used
by any individual, and no initially non-zero-frequency type may ever be-
come extinct. On the other hand, there may be types whose frequency will
become very small, albeit they never reach zero. Indeed, this is one of the
most crucial drawbacks of this family of dynamics, since it does not allow
the adoption of new behavioural types that were not initially used in the
population. We say that the simplex of used types is invariant under the
replicator dynamics. As an extreme example, observe that any population
that adopts exclusively any specific type is definitely a rest point1 of the
replicator dynamics, since there is actually nothing different from this type
to imitate. The following theorem gathers some folklore propositions demon-
strating the close connection of the rest points of the replicator dynamics
and the notions of NE and ESS:

Theorem 3 (Samuelson 1997 [79]) Consider the replicator equation 1.1
and the corresponding symmetric two-person game Γ = ({1, 2}, {R,R}, U)
determined by the changes in fitness of the different types.

1. (x,x) ∈ ∆(R) is a NE ⇒ x is a rest point. The opposite need not
always be true.

2. x is a stable point ⇒ (x,x) is a NE. The inverse is not true in general.

3. x is asymptotically stable ⇒ (x,x) is a perfect, isolated equilibrium.
The inverse is not true.

4. x is ESS ⇒ x is asymptotically stable. The inverse is not true.

5. In a 2-player, 2-strategies game, x is asymptotically stable ⇔ x is an
ESS.

1A rest point of a system of differential equations
n

dxi
dt = f(x)

o
i∈[n]

is a point z ∈
∆(R) : f(z) = 0. A rest point z is called stable if for any neighborhood V of z, there
is a neighborhood U ⊆ V s.t. x(0) ∈ U ⇒ ∀t ≥ 0, x(t) ∈ V . A stable point z is
called asymptotically stable or attractor if there is some neighborhood U of z s.t.
x(0) ∈ U ⇒ limt→∞ x(t) = z.
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1.3.3 Stochastic Models.

The dynamics models based on systems of differential equations is not the
only way to describe the behaviour of an evolutionary game. For example,
Boylan [12, 13] who shows that a choice model may give behaviour that
differs markedly from the behaviour described by a system of differential
equations. The crucial assumption in Boylan’s model is the finite popula-
tion size. Each individual is then considered to play exactly one game with
a single opponent in each period, where all the possible matchings of oppo-
nents are equally likely to appear. After each such match the contending
individuals die and are replaced by two new individuals, whose behavioural
types are determined by the payoff matrix of the game. Notice that by
construction of the model, the population size always remains the same. It
is only the frequencies of the behavioural types that alter. We thus have a
finite stochastic process to study. Boylan uses either a deterministic, dis-
crete analogue of the replicator dynamics, or derives a continuous replicator
dynamics that is given by assuming that the population size tends to infinity
and the length of each period tends to zero. In both cases it is proved that
these dynamic systems are good approximations of the considered stochastic
process.

Another approach is the Kandori-Mailath-Rob (KMR) model [54]. The
model also uses a symmetric normal-form game played by a single population
of N individuals, each of whom is characterized by a pure strategy. In
each period, these individuals are matched in pairs to play the game an
infinite number of times. At each iteration, each individual is equally likely
to be matched with any of the N − 1 other individuals in the population.
Consequently, there is no randomness in the average payoffs received in each
period, and in each period an individual (playing a fixed pure strategy) gets
the expected payoff of playing against the mixed strategy corresponding to
the frequencies of the pure strategies in the population. At the end of each
period, each individual “learns”, in the sense that he changes strategy to
the best response to the current frequencies vector (which is dealt with as a
mixed strategy of the opponent in each iteration). It is not necessary that all
individuals change their strategies to the best responses to the frequencies,
so long as there are some of them that do so. After learning, “mutations”
take place: Each individual with some (small) probability λ decides to drop
its current strategy and choose a new pure strategy uniformly at random.

The KMR model is actually a Markov process whose state space is
{0, 1, . . . , N}N−1, ie, all the possible assignments of individuals to the avail-
able pure strategies. It is easily seen that the transition matrix of this process
is strictly positive. It suffices to observe that there is a positive probability
that at the end of a period, after learning, all individuals choose to mutate
and it happens that they choose those strategies that produce a given config-
uration. Thus, the KMR model has a unique stationary distribution, that is
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independent of the initial conditions and that will attach positive probabili-
ties to all states in the state space. Yet, it is shown that when the mutation
probability λ is sufficiently small, all the probability mass in the stationary
distribution is accumulated only on a few states. By letting λ → 0 Kandori
Mailath and Rob direct our attention to a limiting stationary distribution,
which is often easily computable and produces powerful results.

These alternative models for studying dynamical systems are in many
cases complementary to other dynamics models and help us in equilibrium
refinements in cases where the latter models are actually indecisive.

1.3.4 Computational aspects of game-theoretic evolution

There has been an explosion in recent years of computational simulation
results in evolutionary games. In such models complex and interesting phe-
nomena is often evidenced but (as discussed later in section 2.3) proof and
full understanding (i.e. analytical tractability) is often difficult to establish.

In the following section a flavour of these models is presented through a
small set of recent examples relevant to DELIS.

We outline in section 3 some of our on-going work to extend game the-
oretic analysis in order to support these more complex scenarios. This in-
volves the ambitious task of advancing the state-of-the-art in game theoret-
ical analysis of evolving systems.
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Chapter 2

The Simulation approach

As stated in chapter 1, in many target domains the behaviour of systems
are not understandable using the traditional tools of classical game theory.
By this we mean that game theoretical analysis does not give any predic-
tive understanding or prescriptive guidance for the behaviour of actors (or
agents) within the system, or indeed of system level outcomes.

This is because the strong classical assumptions concerning the rational-
ity, computational capacity and limited communication abilities of actors do
not always hold. Also the focus on equilibria may be of little value when
systems are always out of equilibrium.

In general the classical assumptions breakdown when systems contain:

• significant levels of noise

• adaptive agents using heuristic algorithms

• agents with limited computational capacity

• agents with limited knowledge and information concerning the system
as a whole

• delayed and / or faulty feedback concerning utility of actions

• agents with the ability to communicate directly with each other

• heterogeneous agents with different learning algorithms and initial be-
havioural predispositions.

Although it may be the case that specific forms of the above can be
incorporated into some classical treatments under some given scenarios, in
general these kinds of properties make such treatments very difficult. Es-
sentially, without strong assumptions it is not possible to know how other
agents will behave in given situations. Hence, it is not possible for agents
to know, a priori , what the best way to act is.
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In the context of DELIS-like systems, where dynamic and evolving sys-
tems are considered, at least some of the behaviour will be beyond the cur-
rent state-of-the-art in analytical game theoretical understanding. One ap-
proach to address these relaxed assumptions is to use evolutionary metaphors,
drawing on ideas from biology. These can go a long way to addressing the
issues. The application of ESS analysis and the Replicator Dynamics (see
previous chapter) provide powerful mechanisms for dealing with bounded
rationality, noise and trajectories between equilibiria - however, this is an
on-going area of research (see section 3).

Recently there has been a trend towards the explicit behavioural mod-
elling (in computer simulations) of multiple interacting entities. Each entity
(or agent) is specified as a computer program sharing a common environment
when the simulation is executed the modeller observes the resultant emer-
gent behaviour. In these approaches models can be constructed of arbitrary
complexity (perhaps employing A.I. techniques) and size (up to millions of
agents). Currently these approaches are still within the research domain
and as such no accepted or mature methodology is established. In order to
indicate the kind of approach and techniques used we will (in the following
sections) give some specific examples the examples have been selected be-
cause they have relevance to the DELIS objectives and also because they
evidence a particular level, technique and / or approach.

When researchers move from analytical tractability in mathematical
models to computational constructability in algorithmic (agent-based) mod-
els, new kinds of questions need to be addressed namely, how do agents ac-
tually behave on an individual level (micro-level behaviours) in day-to-day
interactions? Additionally, what kinds of micro-behaviours are sufficient to
produce the higher-level norms, institutions, practices and dynamics that
we observe in human economic worlds?

Interestingly, there are bodies of recent research that has attempted to
answer these questions, both empirically and theoretically, called Evolution-
ary Economics and ”Organisational Science” we consider these areas later
in section 2.2.

2.1 Individual-Based Modelling

It is well know that the ESS and Replicator Dynamics approaches give very
good (analytically provable) results for systems where the general assump-
tions on which they rest hold (generally, a priori pay-off matrices, mean
field mixing, large populations, minimal effects of mutation etc). However,
where populations are small and susceptible to noise or large amounts of
mutation (change) or the payoffs are not known in advance or where local
interaction is significant (i.e. some kind of topology is imposed on partner
selection) then results can significantly differ from what the previous results
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suggest even when pure strategies are used and the evolutionary assumption
holds (i.e. proportions of strategies in the next generation proportional to
fitness in current generation).

In order to explore the results of these kinds of systems researchers have
made use of individual based modelling in which each individual agent move
(and the resulting payoff) is simulated. Generally after some period of time
these ”action sequences” are followed by a process of evolution using tech-
niques from Genetic Algorithms [52] or Genetic Programming [56].

In the now famous work of Nowak and May [71] [63], they showed that
by placing agents on nodes in a two-dimensional lattice where they interact
and evolve locally only (i.e. only playing with and copying neighbours based
on utility) that under many parameter values cooperation persisted in the
population (often dynamically and cyclically). The only way to determine
these conditions was via the individual modelling approach. Although post
hoc theoretical arguments can then be made generally such systems produce
very complex dynamics which are hard to analytically capture and often tend
towards the chaotic.

Recently the use of tags [53], both abstractly [74] [37] [75] [29] [40] and
applied to P2P type random overlay networks [42] [41] have been studied
with simulation. From these studies it has been found that simple mech-
anisms of local interaction combined with reproduction of strategy based
on fitness can produce high levels of cooperation even in the single-round
Prisoner’s Dilemma (the single-round Prisoner’s Dilemma (PD) captures a
minimal form of a commons dilemma - see below). These results are par-
ticularly relevant to P2P random overlay networks since interactions are by
definition local to the neighbours of each peer and the interactions between
peers can be viewed as a commons dilemma of sorts since each node in a
P2P is likely to be in the system for what they can get out of it rather
than for altruistic reasons although in reality some altruism exists. Initial
empirical work on the behaviour of nodes in actual file sharing P2P systems
has been perform [1].

2.1.1 Example 1: Prisoner’s dilemma on the network

The single-round two player PD captures a form of commons dilemma where
cooperation would benefit both participants but there is always an incentive
for for each to not cooperative (to free-ride) and get a higher individual
score. Figure 2.1 shows the pay-off matrix for the PD and explains the
dilemma.

We found that we could produce high levels of cooperation within net-
works (modelled as unstructured, undirected graphs) with each node either
a cooperator or defector, where nodes play single rounds of PD against ran-
domly chosen neighbours if we mutate not only strategies on reproduction
but neighbour lists also. We do not go into details here, however, figure 2.2
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Cooperate Defect
Cooperate C, C S, T

Defect T, S P, P

Figure 2.1: A payoff matrix for the two-player single round Prisoner’s
Dilemma (PD) game. Given T > C > P > S ∧ 2C > T + S the Nash
equilibrium is for both players to select Defect but both selecting Cooper-
ate would produce higher social and individual returns. However, if either
player selects Cooperate they are exposed to Defection by their opponent -
hence the dilemma
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Figure 2.2: An illustration of replication and mutation as applied to the
network. Dark nodes play D and light nodes play C. In (a) the arrowed link
represents a comparison of utility between A and F. Assuming F has higher
utility then (b) shows the state of the network after A copies Fs links and
strategy and links to F. A possible result of applying mutation to As links
is shown in (c) and the strategy is mutated in (d).
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Figure 2.3: Charts show results from network model. Chart (a) shows a
typical time series (N = 10,000 nodes) giving the percentage of cooperative
nodes. Chart (b) shows the number of cycles before 99 percent of nodes are
cooperative for various values of N. Each dot is an individual run.

gives an overview of the way that reproduction and mutation is applied to
a network structure. Figure 2.3 shows some results from our model. Very
recently we applied the same process to a more realistic query-answering
scenario as advanced by [80]. We found that the mechanism suppressed the
tendency of individual nodes to flood the system with queries [41].

These initial results, although encouraging still require refinement before
they can be used to produce deployable systems. Where techniques exist
as individual based models then the behavioural rules (i.e. the algorithms
that nodes use) are by definition already specified. This means that for the
purposes of adapting such results for application to computer networks we
have an initial starting point from which to work. Initial work proposes
[43] moving from an original abstract model to more realistic scenarios via
a succession of models. Using this general technique, algorithms can be
imported and adapted from biological or economic disciplines / scenarios
into engineering problem scenarios.

2.1.2 Example 2: Reputation and image

Lai et al [57] build on both the reciprocity work of Axelrod [7] and work by
theoretical biologists Nowak and Sigmund [72] in which the importance of
image and reputation was investigated in the context of repeated interactions
in the Prisoner’s Dilemma. However, Lai et al modify the interaction payoffs
of the Prisoners Dilemma game to represent a file-sharing scenario in a P2P
(see figure 2.4). They then investigate the effectiveness of both private
histories and shared histories in supporting high levels of cooperation.

Peers using private histories store their own histories of interaction with
all they encounter whereas those using shared histories have access to a
shared store of all past interactions of all peers. They show that as the size
of the population increases private histories become less functional because
peers are more likely to meet strangers. They use their results to argue
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Allow download Ignore request
Request file 7, -1 0, 0

Don‘t request 0, 0 0, 0

Figure 2.4: A payoff matrix capturing a possible client / server interaction
pattern in a simulated file-sharing scenario (taken from [57]).

Figure 2.5: From Lai et al [57]. Each chart shows a comparison of the
shared and private history methods over a number of different parameters
(including different proportions of initial cheaters and numbers of games
per round). The x-axis represents size of population, the y-axis level of
cooperation. Each point represents an independent run. As can be seen in
each presented case, shared histories outperform private histories.

for the development of robust mechanisms that can support shared histo-
ries (though they acknowledge such mechanisms are costly and difficult to
implement). Figure 2.5 gives an example some of their results (taken from
[57]).

What is interesting in this work is that Lai et al draw on the meth-
ods, results and techniques of both a (political scientist) [7] and (biologists)
Nowak and Sigmund [72] and attempt to adapt them to a P2P scenario.
By applying simulation techniques and algorithms rather than proofs and
formalisms, they manage to import and integrate knowledge from diverse
disciplines and apply it (using simulation) to the problem in hand. The work
compares different possible reputational mechanism for effectiveness. In this
sense the simulation can be seen as a kind of ”socio-biologically” informed
pre-prototyping exercise.
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2.1.3 Agent-based simulation (ABS)

In both the previous examples a simple payoff matrix in which agents re-
ceived payoffs based on their actions modelled interaction. The matrix was
specified a priori and exogenously and stands-in for some kind of interaction
process (e.g. file downloading). However, as demonstrated in the previous
example, how can one decide on a payoff matrix for some target phenomena?
There are many possible plausible values but what about more realistic sit-
uations, where payoffs are not explicit or are dynamic depending on other
properties of the system? In some circumstances it is not realistically possi-
ble to derive an a priori payoff matrix to capture some target phenomena.
How can such target domains be analysed?

One way to tackle these issues is to model the underlying interaction
process (at some level of abstraction) and measure performance. So, for a
routing problem a simulation model would be produced in which individual
nodes are represented within a network executing their routing algorithms on
simulated messages. In the context of a file-sharing scenario, nodes (peers)
are modelled sharing data across a network. In such an approach no a priori
payoffs are required, rather, a specification of a target problem scenario is
required and then a simulation model capturing the salient aspects of it.

When interact is modelled at this level of detail it is often termed agent-
based modelling. In such models each individual agent is represented in
the system as a fully functioning and interacting rule based system (a semi-
autonomous sub-system with the system). The ways the agents may interact
are therefore not completely preset and new and unexpected (emergent)
collective behaviours can often be observed.

2.1.4 Example 3: Incentives on the network

Qixiang Sun and Garcia-Molina [80] use a simulation model of the underlying
process of passing and processing queries in a P2P file-sharing scenario.
They perform experiments over a number of parameters in order to test the
effectiveness of their Selfish Link-based InCentive (SLIC) algorithm.

In this algorithm, peers maintain weights against their links to other peer
nodes in the network. If they receive good service from a link they increase
its weight, if they receive bad service the decrease the weight. Peers then
share their resources in proportion to the weights. Hence producing a form
of reciprocity (similar to tit-for-tat see [7]). Hence the node level algorithm
designs have been influenced by work from previous pay-off based models.

To test SLIC a number of experiments are performed with different un-
structured overlay network topologies (randomly generated). A system of
flood-fill query passing is simulated, where queries for files are passed to all
neighbours recursively until either some time-out depth is reached or a peer
finds a hit for the query. The process of file downloading is not modelled and
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notes do not store files (in the simulation) - their file storage is represented
by a probability of finding a match for any query (a single real number). So,
neither actual files nor the downloading process is simulated directly, but
the other node (peer) level mechanisms are simulated in full over a simulated
network.

The behaviour of the nodes is described textually and with pseudo-code
algorithms (figure 2.6 gives a flavour of the kind and level of description that
is typical of agent-based simulation approaches) and results are given over a
number of different parameters and runs. Their method of analysis is to set
all to cooperative and then to vary a single node (a probe node) reducing its
cooperative level and analysing the dynamic result over time in the network.
They demonstrate that their SLIC algorithm quickly reduces the service
given the free-riders from the network since the free-riders neighbour peers
quickly reduce their link weights to the free-rider and hence do not deliver
service.

Figure 2.6: Pseudo-code for node (peer) operation (from [80]).

Although Sun and Garcia-Molina don‘t use the term “agent-based” to
described their model it is consistent with the methodology. The model is
not in fact an evolutionary one in the sense that neither agents (nodes) nor
strategies evolve in any sense. However, the links between nodes are changed
– so in that sense there is change over time.
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2.2 Evolutionary Economics and Organisational Sci-
ence

Evolutionary thinking aims at explaining behaviour in systems that, though
not endowed with global rationality, exhibit teleological development. For
example, such systems as species tend to progress but we cannot assign to
species per se the will to evolve (we may only assign the will to survive to
individuals belonging to species).

Evolutionary processes are articulated in three sub-processes: variation
in the characteristics of the elements belonging to a system, selection of
those elements which best fit the environment where the system live, and
retention of the characteristics of best fitted elements at the level of the
system.

The emerging result of the three interacting sub-processes is a learning
process through which systems evolve. Variation sub-processes generate a
repertoire of possible alternative solution to a survival problem. Selection
sub-processes choose the best alternative and retention sub-processes ensure
that the selected alternative will be adopted at system level.

Evolutionary processes display a number of characteristics that were
deemed germane to metaphorical description of mechanisms of evolution of
economic systems. First, search of alternatives is not driven by a maximising
behaviour; on the contrary is the result of blind variation and chance. Thus,
selection of best available alternatives does not necessarily lead to a global
maximum. Second, within evolutionary processes, time is an important
explanatory variable.

The key role of time in evolutionary thinking emerges in three ways.
First, evolutionary processes are path dependent. Favoured species diffuse in
a self-reinforcing mechanisms in which rate of reproduction increases as the
base of individuals carrying the winning phenotypes increases. In this light,
as time goes by, competition among species is increasingly unbalanced and
potentially dominant variations have different chance of survival depending
on the point in time in which they appeared.

Second, evolutionary processes are irreversible. If an individual is se-
lected out, in the future, the evolving system will not be able to change its
mind and retrieve the discarded alternative.

Third, connected to irreversibility, evolutionary processes are charac-
terised by hysteresis. That is, once the cause that generated an effect is
removed, the effect remains an the system will not go back to the previous
state. For example, if a particular species is favoured within a population,
given to transitory environmental conditions, once removed the conditions,
the initially favoured species will continue to diffuse. The self-sustained dif-
fusion takes place because a larger base of individuals carrying the favoured
phenotypes has a larger probability to reproduce, until environmental con-
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ditions will favour different phenotypes.
The before mentioned reasons suggest that the evolutionary metaphor

may be useful to capture the core of economic dynamics because these lat-
ter both unfold as boundedly rational, trial-and-error learning processes and
show path-dependent behaviours. In other words, evolutionary theorising
becomes useful when we relax hypotheses of full rationality in decision-
making and historical efficiency, that is, the assumption that observed be-
haviours at any point in time reflect unique outcomes of underlying system-
atic processes, independently of historical details.

Evolutionary concepts have fertilised recent theorising on economic change
[69] and, as Hodgson suggests [50], is deeply entrenched in economic thought.
In particular, evolutionary thinking supported analysis of industry evolution,
organisational dynamics and technological change taking different stances in
respect to the definition of the unit upon which selection processes operate.
The choice of different units of selection implies different descriptions of
variation, selection and retention processes. We suggest that evolutionary
theorising in economic and organisational theory may be grouped in, at
least, three main threads.

2.2.1 Population ecology

Despite the pray by practicing managers for continual adaptation and sur-
vival, the history demonstrates that it is quite difficult for the established
firm to remain successful in the face of environmental changes brought by,
for example, new technologies and deregulation. It is often the case that the
firms which establish the leadership in the new environment are often armed
with a set of new resources and competencies and with a set of new manage-
ment practices. This simple observation basically supports the emergence
of an ecological perspective of organizational adaptation during the 1980s
[45] [46] [47] [48] [49] [44] [19].

According to the perspective, the established firm exhibits strong struc-
tural inertia. During the process of earlier growth, a firm accumulates learn-
ing about the technologies, customers and the market of its core business
so as to establish a presence in the market and achieve operational effi-
ciency. Yet, it is this learning and resultant routines and capabilities that
often hinders the established firm from experimenting new business ideas
and searching for new operational and management solutions. Core capa-
bilities of the established firm become core rigidities [58]. In the presence of
inertia, Darwinian evolutionary dynamics apply to the competition among
firms. Variation processes generate the emergence of new organisational
forms with new structural characteristics. In the course of environmental
changes, firms with structural forms that do not fit environment are se-
lected out and are replaced by firms with the new structural form which fits
in better with new environment. Retention processes take place at the level
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of populations of organizations by the means of foundation of new organi-
zations showing the winning structural form. Organizational change takes
place not in the form of voluntary adaptation by the established firm but in
the form of change in the population of firms through selection of unfitted
populations.

2.2.2 Dynamics of organisational routines

Nelson and Winter [70] proposed an evolutionary theory of organisational
capabilities adopting an economic analogue of natural selection that operates
at market level as inefficient firms are winnowed out. In Nelson and Winters
theory, a firm genotype is constituted by the set of operating organisational
routines.

Variation processes work within organisations when new routines are
generated. Nelson and Winter describe variation processes as moulding both
boundedly rational problem-solving activities and random events. More
precisely, organisational routines change because they are revised in order
to solve emerging anomalies or to imitate competitors better routines. In
reshaping routines, decision-makers adopt heuristics that recombine parts of
existing routines. In this light, variation impinges upon typical behavioural
assumptions such as local search in the neighbourhood of past solutions [23]
and mimics natural processes of recombination of gene endowments through
sexual reproduction. The stochastic element of variation emerges as errors
intervene in reshaping routines and results may be partially unintended.

Selection processes occur at market level when endowments of organisa-
tional routines determine firms competitive ability and markets select out
unprofitable firms. Units of selection, thus, are firms, which may be regarded
as the phenotype of an endowment of organisational routines [69].

Finally, in the Nelson and Winters framework, processes of retention
of successful organisational routines encapsulate elements from Lamarckian
evolutionary framework since successful organisational routines diffuse not
only because are crystallised within successful firms but also because are
imitated by other firms. Of course, in the process of imitation, errors may
intervene that trigger further variation processes.

Connected to the work of Nelson and Winter is the body of work eco-
nomic change interpreted as the consequence of random activity and evolu-
tion of technology [26] [27] [28]. These studies focus on random activity as
the kernel of search behaviour through which firms hone their organisational
routines and improve their adaptation chances. In this light, innovations fuel
technical change and economic evolution.

This area of contributions has also close connections with works on self-
reinforcing mechanisms in economics. Indeed, evolutionary processes, in
their assigning a key role of time, provide theoretical lenses for the analysis
of positive feedback and path-dependence in economics. In this light, Arthur
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[3] [4] [5] explained how events emerging at the beginning of the history of
an industry may generate lock-in and dominance of inferior technological
standards.

2.2.3 Intra-organisational ecology

Although rooted in the tradition of strategic management research, the theo-
retical contributions of the IOE theory need to be understood in the context
of the adaptation versus selection debate on organisational change, which
has been, and still perhaps is, one of the central debates in the fields of
organizational studies [2] [6] [11].

The adaptation versus selection debate on organizational change con-
cerns the sharp contrast population between the population ecology per-
spective, presented in the foregoing, and the traditional strategic perspective
taken by business policy and management scholars. These latter believe in
the discretion of management of a firm, particularly a large, resource-rich
firm, in controlling the fate of their organization. They argue that managers
are able to, and indeed do, achieve the re-alignment between their organiza-
tion and environment over time by developing new purposes, and policies,
by designing new organizational and administrative systems, and even by
changing performance standards [82] [20].

Although these two perspectives, deterministic environmental selection
and voluntary organizational adaptation, present contrasting views on orga-
nizational change, the IOE theory, pioneered by Robert Burgelman [16] [14]
[15] [17] [66] [18] and shared by some organizational theorists [65], aims to
integrate ecological and strategic perspectives by showing how a large estab-
lished firm simultaneously deals with internal adaptive forces and external
selection pressures when adapting to changes in its environment.

The intra-organizational ecology theory of organizational change, presents
a unique synthesis to adaptation versus selection debate on organizational
change. The perspective views a firm as the ecology of strategic initiatives,
which fall both within and outside the scope of the firms corporate strat-
egy, and argues that organizational adaptation could be realized through a
process of internal competition among these strategic initiatives, which are
units upon which selection processes operate.

New initiatives, which fall outside the scope of the firms current corpo-
rate strategy, represent potential variations in the strategic behaviour of a
firm. Variation, thus, is a deterministic process according in which front-line
managers configure business opportunities that are disconnected from a firm
official strategy and core competencies.

Some features of the firm such as administrative systems, organizational
culture, and most importantly, the concept of corporate strategy exhibit
inertia and often resist against apparent needs for changes. These inertial
features function as an internal selection environment, guide resources allo-
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cation to competitive strategic initiatives and may pave the way for strategic
renewal.

Strategic initiatives may gradually acquire corporate resources and even-
tually challenge the validity of a firms corporate strategy. Retention process
functions by adjusting a firms corporate strategy so to include those initia-
tives which, though originally excluded, proved to be successful.

Throughout the process of organizational change, the firm is both adap-
tive and inertial.

2.3 Challenges for modelling approaches

Individual and agent based models, although tackling some of the shortcom-
ings of the analytical approach (i.e. classical game theory, ESS or replicator
dynamics approaches), introduce their own problems. The main problem is
the status of results obtained from such models and the interpretation of
key assumptions with respect to the real world or target phenomena. In the
context of engineering, the question is: How can we be sure that mechanisms
discovered and tested in simulation wont fall over at an future time? Since
we have no proof, just simulation results, our results are always contingent.
One method of tackling this is to simulate many possible scenarios to a high
degree of realism - but this is expensive and non-trivial and still only delivers
contingent confidence. A better approach is to formulate a theory of how
the mechanism works and produce simpler models that become analytically
tractable. However there is no general methodology for doing this currently
- we will attempt to make some progress on this (see section 3.3).

2.3.1 Where’s the proof?

A major limitation of the evolutionary approach is the difficulty in produc-
ing anything close to the kinds of proofs that analytical game theory can
deliver. Essentially, out of equilibrium systems, composed of complex inter-
connected, evolving non-linear units (under noise) offer many problems for
attempts at proof. Given this, the next best option is the rigorous analysis
of results from computer simulations. The difficulty with such models, how-
ever, is in determining what properties are significant in producing given
behaviours i.e. identifying necessary and sufficient conditions for observed
behaviour of interest rather than merely advancing the model as an existence
proof and therefore only giving contingent results.

Ultimately, general results derived from simulation results can always
be overturned if new simulation results contract them. Essentially, it is not
possible to identify general properties with the certainty of a proof. It is
of course possible to identify specific results and properties with certainty
(assuming the computer program implementing the simulation is correct in
relation to the specification). One way to increase certainty in this latter
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case is to compare models implemented by different authors on different
platforms (the so called ”docking” or ”aligning” of models [8]).

Ideally, simulation models should reinforce, inform and test the predic-
tions of analytical proofs (possibly of highly simplified / abstracted systems)
in order to give those proofs more credence this kind of approach [9] [10],
[72] although not always possible, provides an ideal way to combine ap-
proaches in a mutually beneficial way. It would appear that the best kinds
of work in the context of engineering application would supply both proofs
and analytical arguments and simulation models demonstrating how prac-
tical applications might pan out.

2.3.2 What does fitness mean?

In the context of biological interpretations of evolutionary models the con-
cept of fitness (i.e. replicative power) has a direct interpretation number
of offspring produced. However, when evolutionary models are applied to
human social processes, such as economic systems, it is unclear what exactly
fitness might mean. It would seem that each different model application do-
main would require a careful justification of the nature of fitness the model
for example, in a model of competing firms profit might be considered as
fitness. However, on the whole such interpretations are problematic.

In the context of DELIS, again, the concept of fitness requires analysis
within each application domain. By taking an engineering stance and pre-
scribing fitness as some desirable property at processing client/server nodes
(such as download speed, query answering rates, jobs done etc) we can side-
step some problems of interpretation but there is still the problem assuming
that nodes with higher fitness (or more precisely the behaviour of nodes
with higher fitness) will tend to spread through a population nodes.

The traditional interpretation is as given in [57] is simply that it is as-
sumed that the behaviour of nodes with higher fitness spreads because users
somehow copy client software that gives better perceived results (results be-
ing equated with fitness). In a file-sharing scenario, for example, this might
be percentage of queries producing a downloadable hit. However, the prob-
lem with this approach is that it assumes that somehow (in an un-modelled
way) users update their client software based on self-interest utilising a ho-
mogenous utility metric. Such models rarely address where such homoge-
nous metrics might come from or how and when users swap client software.
It would appear that such behaviour would be more complex than current
models posit.

2.3.3 Are the agents too dumb?

It is often claimed that the classical game theory assumption that all actors
(or agents) have perfect information and unlimited computation (and know
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that all other actors have this) is unrealistic giving actors god like pow-
ers. But in many evolutionary models, actors have, what could be argued
as, a overly bounded rationality. Generally only a few degrees of freedom
are aloud in the strategy space and behaviour change is through some kind
of random mutation and myopic copying without any underlying theory or
model of how behaviour is affecting outcomes. Evolutionary actors often ap-
pear to be blind and dumb as opposed to the god-like vision of the classical
actors. An explanation for this probably originates in two factors, firstly,
that many of the evolutionary models hark back to those produced by biol-
ogists (in which evolution is blind and dumb) and secondly as a counter to
the overly cleaver agents in the classical approach.

However, it would seem that even (perhaps especially) within DELIS-like
networks specifically when we want to deal with potentially cleaver cheaters
as well as simple bounded optimisers, we need a range of behaviour strategies
not just all cleaver or all dumb. Also, it would appear that in addition to the
heterogeneity of behaviour at any given time there would be heterogeneity of
the adaptive mechanisms employed - different actors (or agents) may adapt
their behaviour using different mechanisms (or maybe not at all).
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Chapter 3

Combining Approaches

Our aim is to develop the application of classical, evolutionary and modelling
approaches to evolving networks. Additionally we intend to combine and
link these approaches something that is currently very rarely done. We aim
to draw on the diversity of expertise within the group to focus on common
problems and combining techniques. We see this aim as ambitious and
timely. Our aim is to make substantive contributions to methodologies for
combined approaches.

It is widely recognised that classical approaches offer solid proofs but that
more complex computational models sometimes capture new and interesting
phenomena all agree that a combination of the two, proof and computational
implementation in the form of simulations in more realistic task domains, is
the gold standard to aim for. However, there is currently little work, theory
or methodology that guides the combination of the two approaches.

In this section we propose a number of on-going projects and ideas that
the partners within WP4.3 will work on over the next 12 months. We
outline each project briefly in sections 3.1 to 3.8. Some of the projects
will be collaborative and some will independently support each other. For
example, the ideas outlined in section 3.8 are directly relevant to the larger
goals of section 3.1. All the projects relate to the methodological goals given
in section 3.3.

We do not envisage solving all the problems and issues raised in these
project overviews. We will focus on those avenues of investigation that
become productive. We therefor do not present this section as a complete
specification or plan of work but rather as the current on-going work which
will almost certainly be pruned over-time.

We now briefly discuss issues of WP co-ordination and dissemination.
In the context of co-ordination the WP partners have already had a brief,
yet highly productive and encouraging, meeting (discussing the content of
this deliverable along with wider long-term goals for the WP has outlined
here). The meeting took place in Bertinoro, Italy on 1/6/04 and minuets
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of that meeting are available on the DELIS partners website. We aim to
continue this and arrange further meetings in order to facilitate on-going
co-ordination and cooperation. Relevant partners, in addition to regular e-
mail discussions and electronic collaboration, will meet physically, to discuss
progress and on-going work in two informal workshops between month 6 and
month 18 of the project. We expect the workshops to be at least one full
day and will comprise of presentations and detailed technical discussions.

In the context of WP dissemination when new techniques are identified
we aim to disseminate results to relevant academic and industrial communi-
ties as quickly as possible by presenting and publishing results in recognised
conferences, workshops and well-cited relevant journals. If considered nec-
essary we will organise workshop events with relevant industrial partners in
addition to academic communities to aid dissemination.

3.1 Cooperation through network dynamicity

As discussed in chapter 2 we have already produced models using individual-
based [37] [42] and agent-based [41] models demonstrating how high coop-
eration can be maintained under assumptions of boundly rational (selfish)
greedy behaviour within both the single-round Prisoners Dilemma and the
file sharing scenario given in section 2.1.4. Over the next 12 months we will
pursue the following goals and tasks. At this stage we feel it appropriate to
be ambitious (but not unrealistic).

Goals:

• To develop both practical and theoretical understanding and reusable
engineering techniques related to this unique cooperation forming pro-
cess for application to the problems of self-organisation of cooperative
interactions within decentralised and dynamic networks

• Where possible we wish to demonstrate working systems and formal
proofs we consider this to be a gold standard which, while non-trival,
is worth pursuing

Tasks:

• Identify application areas and produce simulations that address those
areas with a higher degree of realism

• Prototype at least one application to the level of proof-of-concept,
running on typical Internet infrastructure

• Develop analytical tools from Game Theory to help understand the
process, identify necessary conditions for cooperation

38



• Link work from the social simulation literature on social networks to
results and models where appropriate

3.2 The emergence of organisations

Of considerable current interest in the distributed systems engineering world
is the idea of reusable, run-time decentralised component based program-
ming (or even agent based mobile code). In such visions code is highly
encapsulated and abstracted into a “component” or an “agent”. Such units
combine at run-time dynamically over networks to achieve system level (user
specified) goals. In agent-based systems the agents (often forms of mobile
code) have their own goals and proactively seek other agents to form coop-
erative groups (or organisations) to achieve their mutual goals.

Goals:

• Identify, refine and apply behavioural ideas from organisational science
(including empirical work on human systems) in order to understand
how individual agents come to form organisations and to explore what
kinds of organisation are stable, equitable and productive.

• Align this with both realistic human social phenomena and potential
application areas with agent-based software systems over computer
networks such that results can be of use to bother social scientists and
engineers.

• Gain a deeper theoretical understanding of such models and methods
by linking them to analytically tractable (abstracted) forms of the
same process.

Tasks:

• Construction of (a set of) agent-based simulation models that capture
the dynamics of organisational (firm) formation based on boundly ra-
tional behaviours of agents. The design will be based on existing
Evolutionary Economics literature including empirical work. The pri-
mary focus of the model(s) will be on the interaction of skill-sets (i.e.
knowledge and intellectual skills) in the formation of productive or-
ganisations.

• Identify an application domain within agent-based engineering Identify
an application domain within social scientific analysis

• Where possible link to existing game theoretic notions Nash Equi-
librium and evolutionary game theoretic tools such as ESS and the
replicator dynamics.
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3.3 Linking and deriving model sequences

It has been evident in the nature of this report that we have a problem akin
to the excluded middle in our modelling approaches. Analytical tractability
often calls for simplifying assumptions that tend to exclude some of the
more interesting phenomena produced by (some might say overly complex)
agent-based or individual-based simulation models.

However, as we have noted, simulation results dont count for proof.
Specifically when a model is complex then the number of significant param-
eters and mechanisms hidden within it are too numerous to experimentally
search. Does this mean that the two approaches are stuck on disparate is-
lands? We think not. Indeed we look to work where a link is made between
analytical proof and complex simulation results [9] [10] [7] [72]. Although
often tentative and of a limited nature we consider such work as important
in demonstrating best practice.

We want to generalise the method by which a complex intractable model
may be simplified (via a series of steps or transitions) towards a more
tractable version while retaining the phenomena of interested. Conversely
we also see the reverse process is valuable i.e. how to take a proven technique
and, via a series of simulation models, come to a technique deployable in a
real computing environment (with all the noise and lack of control therein).
Some previous work [38] [39] applied techniques from machine learning to au-
tomate certain simplifications method with limited success and researchers
in social simulation have proposed model alignment or docking [8] [29] as
away of checking different models for equivalence but as far as we are aware
nobody has proposed a convincing general methodology for performing these
operations.

Goals:

• Develop, through application to our outstanding problems (as previ-
ously highlighted), a general methodology or technique for generating
new models from existing ones, either making them more relevant to
an application (more complex) or more amenable to tractability (less
complex) while retaining the phenomena of interest.

• Ideal result would be a generalised method for moving any given model
of an emergent phenomena both towards application and towards an-
alytic proof we do not envisage such a result is realistic hence our
realistic goal is to start a process of investigation with this goal in
mind.

Tasks:
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• Generate a series of models (both simulation and analytical) for both
3.1 and 3.2 (above) capturing phenomena of interest at various levels
of abstraction

• Develop sufficient methods for aligning these models and/or generating
new models towards alignment if necessary

• Examine the use of machine learning techniques to automate some
aspects of the process

• Produce results in the form of examples and generalised methods and
their evaluation

3.4 Equilibrium Selection.

The most popular notion of stability in game theory is the Nash equilibrium
(NE) [68]. Although the notion of NE is quite natural, if we restrict ourselves
to pure strategies, we may not be able to reach a pure Nash equilibrium
(PNE) at all. For example, in the Matching Pennies game shown in figure
3.1 there is no PNE at all. More importantly, even if we have PNE in
a game, we may face a situation where multiple PNE exist, of different
payoffs for the players and quite different aggregate performances. The
problem then is for a rational player, how to decide which of the several NE
is the “right” one to settle upon. To this direction, numerous refinements
of the space of (P)NE have been proposed in the literature. In fact, there
are so many refinements, that practically every NE may be shown to be
the “right choice” of a proper refinement! There is a strong hope that
evolutionary game theory will assist this kind of choices. The reason is the
systematic way by which the evolution is modeled, as a kind of a reasonable
game between an individual and some other individuals (or even against all
other individuals). The point is to be able to construct computationally
efficient algorithms for quantifying the values of all the NE, or even solving
the corresponding optimization problem in the space of NE wrt a given
objective function. Recall that for an evolutionary game the reachable NE
are a subset of the rest points for the dynamics of this game, which in turn
are the endpoints of (continuous in the limit) trajectories starting from some
strategy initially adopted by (ie, prevailing among) the users. This should
not be confused with the (computationally hard) task of determining the
worst/best NE in a traditional game.

Additionally it would be extremely interesting to devise an algorithm for
detecting the existence of an ESS in an evolutionary game, that only takes as
input the n×n matrix U determining the payoffs of the game and responds
with YES/NO, or even better, constructs an ESS in case of existence. Recall
that an ESS is a NE of the corresponding bimatrix game with an additional
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Heads Tails
Heads 0,1 1, 0
Tails 1,0 0, 1

Figure 3.1: The Matching Pennies game: The row player bets on different
outcomes showing up, while the column player bets on the same outcomes
showing up. For this game there is no PNE.

stability property, which does not necessarily hold in a NE. Indeed, one can
construct simple examples where a small payoff matrix admits no ESS at all
(although the game has at least one NE). A similar computational problem
is the description of a computationally efficient evolutionary process (ie, the
proper rule for evolution) that will lead as fast as possible to a rest point
which is also a NE for the corresponding traditional game, or even an ESS
for the evolutionary dynamics.

3.5 Bounded Transitions between stable points.

Apart from the problem of constructing Nash Equilibria or Evolutionary
Stable Strategies, or any other stable points of a dynamical system, it is in
many scenarios crucial to be able to move from one point to another within a
bounded movement cost. For example, one might want, starting from a NE
of given price of anarchy, to jump in polynomial time to a strictly better NE
with specific characteristics, with, eg, better-reply movements, without ever
reaching a profile with price of anarchy more than a times worse than that
of the starting point. The nashification techniques are of similar flavour,
but in this case we are in a position to start from an initial NE and we
would like to explore the space of equilibria for an equilibrium with specific
characteristics, avoiding to pay too much on the trajectory towards the
destination. A similar issue is of interest for the ESS in evolutionary games:
Starting from a given ESS and a given bound on the deterioration of the
price of anarchy that we may cause temporarily, we would like to determine
trajectories that will lead to new ESS with some special characteristics (eg,
excluding undesirable actions).

3.6 Bounded vs. Unbounded Rationality.

A central assumption of the traditional game theory is that each player
adopts a kind of selfish behaviour, exploiting the complete knowledge of
other players’ decisions. For example, in order to be able to assign a car-
dinal utility function to individual players, one typically assumes that each
player has a well-defined, consistent set of preferences over the set of “lot-
teries” over the outcomes which may result from individual choice. Since
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the number of different lotteries over outcomes is uncountably many, this
requires each player to have a well-defined, consistent set of uncountably
many preferences, which is typically considered to be infeasible.

In many cases though this is not a feasible situation, either because it
is not computationally efficient to handle such an amount of information,
or because each player only knows the actual strategies of those players
in its own neighborhood. Despite the fact that traditional game theory
does not deal with such situations, there is a strong hope that evolutionary
game theory will manage eventually to successfully describe and predict
the behaviour of such players since it is better equipped to handle these
weaker rationality assumptions and yet causing the same effects on players’
behaviours in the long run as complete-knowledge traditional games. A
typical example of such a scenario is when we wish to cut off the iteratively
dominated strategies of the players. Depending on the model of evolution,
we are able in some cases to assure that all these strategies, that a rational
individual should never play in a traditional game, will eventually vanish in
the evolutionary version of the game.

The computational point of view demands again to design algorithms
dealing with bounded rationality and achieving in polynomial time (possibly
good approximations of) the same outcome as the one expected by the
corresponding traditional game.

3.7 Trajectory Prediction.

Due to its nature, evolutionary game theory explicitly models the dynamics
present in interactions among individuals in a population. One might try
to capture the dynamics of the decision-making process in traditional game
theory by modeling the game in its extensive (rather than its strategic) form.
However, for most games of reasonable complexity, the extensive form of the
game quickly becomes unmanageable. Moreover, in the extensive form of a
game, traditional game theory represents an individual’s strategy as a spec-
ification of what choice that individual would make at each information set
in the game. A selection of strategy then corresponds to a selection, prior to
game play, of what that individual will do at any possible stage of the game.
This representation of strategy selection clearly presupposes hyperrational
players and fails to represent the process by which a player observes its op-
ponents’ behaviours, learns from these observations and makes a best/better
response, replication, imitation, etc choice to what it has learned so far.

We would like to be able to decide in polynomial time whether two
phenomenically different evolutionary dynamics actually produce the same
trajectories, up to some kind of homeomorphism. This would enable a clas-
sification scheme of the evolution schemes into broader categories according
to their orbital characteristics. Such kind of classification for replicator dy-
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namics exist only when there are 2 or 3 distinct types of individuals in the
population.

3.8 Imposing structural properties of a game into
the evolutionary dynamics.

Our last question deals with some new ways of interaction in the evolution-
ary dynamics of a game, that will also depict the special structure of the
corresponding traditional game. For example, when a virus spreads in a
network, the architecture of the network itself and the starting points of the
virus in it should affect somehow the success of the virus. The proposed
game theoretic models of evolution proposed so far in the literature, mainly
focus on the case where the individuals in a population collide with each
other in a random fashion. Ie, the underlying “interaction” infrastructure
is represented by a clique. What if this is not the case, and we have instead
some special graph representing the interactions? We need new evolutionary
models to capture such cases, that will somehow encode the structure of this
graph in the dynamics, via elementary properties (eg, the connectivity or
the expansion of the graph).

A smooth way of inserting the network affection in the evolution of
a game, might be to use the power distribution on the graph distances
of nodes, instead of the uniform distribution, in order to determine the
contending nodes in each round. More specifically, we could let each user
to choose its own opponent according to the probability distribution ∀u ∈
V \{v}, P {u is the opponent of v} = µ·[d(u, v)]a, where d(u, v) is the length
of the shortest path from u to v in the network, a ≥ 0 is a tuning parameter
and µ ≡ ∑

w∈V \{v}[d(w, v)]a is a normalizing constant. Observe that if we
set a = 0 then we get the uniform distribution, while for a → ∞ we force
v to contend only with its 1−neighbours in the graph. Such an approach
may lead to phase transition phenomena in the appearance of equilibria or
stable strategies with specific properties. This approach actually allows the
smooth injection of the network structure into the evolutionary game.
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Chapter 4

Summary / Conclusion

We present this report (D4.3.1) as an outline of our different approaches and
traditions along with what we see as some common problems we can tackle
with high relevance to DELIS objectives. We have also outlined our specific
on-going projects with their desired goals and associated tasks.

We are particularly keen to attempt to bring together our approaches
since this is rarely done elsewhere (we have made reference to work that we
feel does this) but we have a realistic understanding of the difficult problems
we are endeavouring to solve.

Our basic approach then, given this is the start of the DELIS project, is
to be optimistic and ambitious at this stage and to confront what we view
as our main obstacles head-on rather than attempt to explain them away or
ignore them.

However, we still believe we are being realistic and hope that we have
defined our work such that even negative results will be of value to the wider
community and the on-going project.

We will report on our progress at the 18-month stage in deliverable
D4.3.2.
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