
Project Number 001907

DELIS
Dynamically Evolving, Large-scale Information Systems

Integrated Project

Member of the FET Proactive Initiative Complex Systems

Deliverable D4.3.3

Evolutionary and socially inspired algorithms,
tools and applications in dynamic nets

Start date of the project: January 2004

Duration: 48 months

Project Coordinator: Prof. Dr. math. Friedhelm Meyer auf der Heide
Heinz Nixdorf Institute, University of Paderborn, Germany

Due date of deliverable: December 2006

Actual submission date: December 2006

Dissemination level: PU – public

Work Package 4.3: Models and Methods for Dynamics, Evolution and Self-Organization

Participants: Universita di Bologna (UniBO), Italy
Research Academic Computer Technologie Institute (CTI), Patras, Greece
University of Cyprus (UCY), Nicosia, Cyprus
Rheinisch Westfälische Technische Hochschule Aachen (RWTH), Germany

Authors of deliverable: David Hales (hales@cs.unibo.it)
Ozalp Babaoglu (babaoglu@cs.unibo.it)
Stefano Arteconi (arteconi@cs.unibo.it)
Edoardo Mollona (mollona@cs.unibo.it)
Giovanni Rossi (giorossi@cs.unibo.it)
Andrea Marcozzi (marcozzi@cs.unibo.it)
Paul Spirakis (spirakis@cti.gr)
Simon Fischer (fischer@cs.rwth-aachen.de)
Berthold Vöcking (voecking@cs.rwth-aachen.de)

Abstract

This report comprises the report for the D4.3.3 deliverable (in association with the relevant soft-
ware1) for workpackage WP4.3 in Subproject SP4 of the DELIS (Dynamically Evolving Large-scale
Information Systems) Integrated Project.

The essential goal of the DELIS project is to understand, predict, engineer and control large evolv-
ing information systems. In this workpackage we explore the fundamental problem of coordination
in networks, particularly when agents or nodes within the network behave in a selfish way, that is,
considering their own benefits rather than system level benefits.

Our work follows two fundamental approaches a) classical rational action and b) evolutionary and
bounded rationality / adaptive action. Some of the open problems using a) in distributed computer
systems are addressed by a proposed authority mechanism which can, essentially, enforce rational
behavior (section 1). If such a system could be implemented then systems could be provably designed
to give desirable behavior. Work in b) assumes agents or nodes will not behave rationality but rather
follow a boundedly rational evolutionary approach (or some adaptive heuristic). In this case what
controls selfish behavior is the dynamic formation of social structures which mediate interaction.
Interestingly, using adaptive routing mechanisms we show how efficient equilibrium can be found
(section 2). In section 3 we overview work where we draw on emerging biological and social theory
to inform our models. We show how an evolutionary approach can find socially optimal equilibria in
a group co-orindation game on a network. We also present results from a model that incorporates
emerging ideas from organizational theory to task allocation.2

1Available from http://peersim.sourceforge.net
2Most papers produced within DELIS are available from the DELIS website as DELIS Technical Reports. Where this

is the case references are appended with the DELIS Tech Report number in square brackets. This indicates the
paper was produced within the DELIS project, not some other project.

1

Contents

1 Game Authority for Robust Distributed Selfish-Computer Systems 3
1.1 Introduction . 3
1.2 The self(ish)-stabilizing system . 3
1.3 Auditing the Nash criteria . 4
1.4 Punishment . 4
1.5 Examples of Applications . 4
1.6 Summary . 4

2 Dynamic Traffic Engineering Based on Wardrop Routing Policies 5

3 Evolving Networks for Social Optimum 5
3.1 Introduction . 5
3.2 Weakest Link . 5
3.3 FirmNet . 8
3.4 Summary . 12

4 Conclusion 13

2

1 Game Authority for Robust Distributed Selfish-Computer Systems

1.1 Introduction

Game theory can model structural aspects of distributed selfish-computer systems as elegant social
games. However, existing algorithmic game designs are immature because of several assumptions
that they make. In particular, the entity that enforces the rules of the game should be explicitly
constructed, and (software) agent rationality should be observed. Designs that do not consider the
later imply that software cannot be faulty or mischievous. We design the first suiting middleware
for a game authority that enforces the rules of the game. Moreover, we can detect agents that do
not select their action according to the Nash criteria and, then disqualify them as game participants.
We base our design on a self-stabilizing Byzantine agreement according to which the ma jority of
participants audit the play while dealing with unexpected faults. We use several other cryptographic
techniques for auditing mixed strategies while providing agents with privacy.

A key benefit of our design is that mischievous agents are depicted as Byzantine. Hence, the
middleware transforms classical game models to distributed selfish-computer systems that tolerate
mischievous behavior.

The algorithmic game designer is now provided with guarantees for stability while permitting free
choice. Game theory characterizes the notation of Nash equilibrium as a state with guaranteed self-
enforcing stability that comes with a price, e.g., the price of stability [2] and the price of anarchy [20,
34]. We suggest a new cost criterion for evaluating performances the multi-round anarchy cost. We
show that the cost can be asymptotically optimal when repeated Nash selections are guaranteed. One
may seek strategic coordination (not just by rough consensus). Our design also includes services that
allow agents to share a collaborative effort for coalition optimization. We allow agents to simulate
plays in the framework of their efforts to improve performances, say, by allowing them to deviate
from a path that refines particular potential function of optimality.

Lastly, we offer a service for regulating group-preplay negotiation. Since there are no guarantees
for achieving a self-enforcing agreement within a bounded time (e.g., it may not exist), we consider
other approaches (that do not necessarily satisfy the Nash criteria, but provide elements of free
choice). Unsuccessful negotiations are resolved deterministically with a touch of democratic flavor
(e.g., parliamentarian voting).

The work presented in this section is an overview summary of the work presented in [1]. Technical
aspects, definitions and proofs can be found there.

1.2 The self(ish)-stabilizing system

We consider fault tolerance systems in the presence of selfish agents . Self-enforcing agreements should
be established in order to prevent superiority of some agents that is achieved by their mischievous
behavior. We consider runs with Byzantine processors (assuming that some standard requirements
hold). Therefore, our settings can cope with systems that would have otherwise diverted from the
preferable solution and/or never regain consis- tency. Moreover, our system design is integrated with
the self-recovery mechanisms that can tolerate: (1) periods in which the environment introduces
transient failures, and (2) periods in which the agents act upon short-lived myopic logic, say, due
to transient computational resource shortage (see [21]). However, we assume that such periods do
not occur during a normal run of the execution. The correctness of our system is demonstrated by
considering every nice execution in which the behavior of the non-mischievous agents is according to
the game model (e.g., rational strategic game with complete information), and in which the system
assumption holds (e.g., regarding the Byzantine agreement). During a legal execution, the system is
to facilities a play of the game according to its rules, and for an infinite number of game rounds.

3

1.3 Auditing the Nash criteria

The game authority guarantees that the play arguments, with which agents make their strategic
choices, are well known. Therefore, pure strategic choices of non- mischievous agents can be predicted
by any pseudo rational program. The case of mixed strategies is more complicated. At the beginning
of a game round, we require the agents to declare publicly their profiles of probabilities support
(PPS) for every pure action. At the end of every game round, the system can compare the performed
actions with the declared profiles. The difficulty that arises is that it may be hard to ensure that an
action (or a finite sequence of actions) is indeed random.

1.4 Punishment

In case a mischievous behavior is detected, the agents can strategically punish such a behavior in
the course of the next game rounds. We require that all non-mischievous agents agree on the set
of mischievous agents. Moreover, we assume that it is technically possible to exercise pun- ishment
actions. Since the standard requirements for Byzantine agreement hold, such an agreement is possible.
Moreover, standard requirements for Byzantine agreement allow us to assume that it is technically
possible to exclude (for several game rounds) any processor that exhibits Byzantine behavior, and
prevents all mischievous agents from participating in the game.

1.5 Examples of Applications

Traditionally, the applications of the computational game theory consider rough consensus among
uncooperative agents. In this section, we consider applications that make use of the game authority,
which ensures the legitimacy of agents actions and allows preplay negotiation. The market game.
There is a marketplace with several stands selling different merchandise. The locations of the stands
influence the selling potential. Obviously, each seller would like to have the prime location, in order
to sell more of his/her merchandise. A certain percentage of the profit is deposited to a common
account and is distributed evenly among the sellers.

In the social democratic policy every sales-person tries to organize the stall in a way that max-
imizes the overall sales. This is because the sales people change their positions and conduct the
sales in a round robin fashion and, therefore, earn the same portion of the total market sales. In
the capitalistic policy, the sales person that finds a better stall location arrangement will benefit
from choosing the prime location. The ma jority will still benefit from the improvement due to the
common (tax) account.

Another aspect of privacy can be demonstrated by proving the existence of necessity of sufficient
resources (e.g., stock) for making a proposal that is believed to increase sales. The sales person that
proposed the better way to organize the stalls might not be willing to reveal his/her exact solution
unless it is chosen to be used (say, just in case it will be chosen later). The sales person may use
zero-knowledge interactive proof [18] to prove to his/hers colleagues that his/her solution is indeed
a better one and do so without revealing the exact manner in which he/she proposes to organize the
stalls.

In terms of distributed systems, we consider computer networks in which users can offer processing
time and memory for use for a certain payment. Networking configuration, such as configuration of
the virtual private network (VPN) or virtual LAN, may influence the performance of each server.

1.6 Summary

We would like to draw the readers attention to the experimental sociological point of view for studying
games that involve the human-factor (according to [39]). It is most common in empirical studies to
have an external observer that records payoffs (with their measurements) and the appli- cable actions

4

(with their statistics). One may view our design as a computational (and distributed) implementation
of the above approach.

The game authority middleware proposed is useful for the construction of autonomous distributed
systems. It provides all agents with online reports regarding their strategic play and allows them
to negotiate in a regulated manner. We believe that our study of game theory and distributed
computing illuminates their different interconnections.

2 Dynamic Traffic Engineering Based on Wardrop Routing Policies

The concept of Wardrop equilibria is similar to the Nash equilibria but applied to traffic routing
through transportation networks. Essentially, the main idea is that if individuals can not unilaterally
change routes and improve their individual performance (reducing travel cost) then a system is in
equilibrium. Such equilibria are also efficient.

In [3] we have seen that a large population of agents is capable of computing approximate Wardrop
equilibria efficiently using a simple load-adaptive rerouting policy (cf. DELIS work package WP3.1).
From these positive theoretical results the question arises whether this policy can be realised in
practice. A main obstacle in implementing such protocols that operate on the timescale of seconds
is the danger of oscillation due to stale traffic information. In [3] this issue is treated carefully.

In [2] we present an implementation of an online traffic engineering scheme based on the above-
mentioned policy within the SSFNet simulation framework. In our protocol, called ReplEx, routers
simulate the behaviour of agents sitting at the end hosts of a network. They do so by assigning weights
to routes and distributing packets with equal destination for which multiple alternative routes exist
according to these weights. Route weights are adapted over time depending on the quality of the
paths. Since routers can directly observe only the quality of adjacent links, they need to exchange
messages once in a while.

Our traffic engineering scheme was simulated in various artificial topologies as well as a real au-
tonomous system consisting of 172 routers. In total, 5,400 Web clients and 417 Web servers were
connected to the access and border routers, and the traffic between these end hosts was simulated
using a realistic web workload generator. It turned out that, when parameterised correctly, the traffic
engineering protocol converges quickly (within two minutes) and computes weights that bring the
system to a Wardrop equilibrium. Furthermore, a significant increase of throughput is achieved.

3 Evolving Networks for Social Optimum

3.1 Introduction

In this section we present recent work in which evolving network structures guide a system toward
cooperative or socially optimal behavior. Firstly we consider the application of a simple network
rewiring scheme which we have produced previously, but we apply it to a scenario which requires
coordination between a groups (not just pairs) of nodes: the Weakest Link Game. Secondly we
explore a set of rewiring mechanisms that are inspired by subcontracting of jobs and tasks between
and within firms: FirmNet. Here we give an overview of the main results from these works, further
detail is available in the associated technical reports [13, 11].

3.2 Weakest Link

In recent work we introduced a simple “copy and rewire” algorithm (SLAC) that structures networks
of nodes towards socially optimal behaviors when they interact with neighbors to generate utility
[4]. The algorithm demonstrates properties such as self-organisation, scalability, robustness to node
turn-over and free-riding behavior without the need for central control.

5

These properties are highly desirable for use in self-organising applications such as peer-to-peer
(P2P) overlay networks where central control is problematical and free-riding and node failure are
prevalent. Hence SLAC has been proposed as a P2P protocol for a number of scenarios [5, 6].

In these previous works, the social optimum, by which we mean the maximum total sum of utility
that can be generated over all nodes, required a non-equilibirum strategy. We found that SLAC pro-
duced networks close to the social optimum even though nodes behaved in a boundedly rational and
myopic selfish way. The interactions between nodes were modeled as pairwise interactions between
network neighbors with a focus on the elimination of free-riding and hence the one-shot, two-player
Prisoner’s Dilemma (PD) game was used.

In [13] we apply the same algorithm to another game called the Weakest Link (WL) which, al-
though having a well defined social optimum strategy, has several different properties from the PD.
Firstly, the WL requires simultaneous interactions between several node neighbors to produce util-
ity, secondly, the game has several possible equilibria each offering increasing social optimality and
thirdly, there is a larger space of pure strategies. This means that a higher degree of coordination
is required between nodes to reach a social optimum but when the optimum is achieved it is an
equilibrium (i.e. there is no incentive for an individual to free-ride). We describe the WL game in
detail in section 3.2.1.

We found that SLAC produced networks that evolved in stages toward the social optimum equi-
librium passing through each of the less optimal equilibria. The network stayed in each equilibria for
some time before jumping to the next. This process was monotonic with the network always jumping
to a higher equilibrium but never to a lower one. This process was robust even when large numbers
of nodes were introduced with strategies that exploit these higher equilibria. Hence we describe
SLAC as functioning rather like a “social ratchet” always selecting strategies that move to higher
social optimum. We also found that if we switched off “mutation” events - a feature of the previous
SLAC algorithm - where nodes spontaneously change their strategy and links we could control the
transition of the network to higher equilibrium by injecting a “seed” into the system: a pair of nodes
following a higher equilibrium strategy. In this sense we see how the network “learns” from examples
dynamically inserted into it and rapidly spreads the new strategy over the entire network.

The SLAC algorithm was adapted from a model developed within computational sociology based
on the “tag” concept introduced by Holland [7] and developed by Riolo [12]. The interpretation here
is of a cultural evolutionary process within a society of agents forming groups based on observable
markings or social cues. From a sociological perspective SLAC can be seen as an adaptation of the
algorithm in which agents interact over, and construct, dynamic social networks based on social cues.

3.2.1 Weakest Link (WL) Game Definition

In a strategic (or non-cooperative) game there are n ≥ 2 players each of which takes some action,
and everyone’s utility depends on the n-tuple of taken actions. Formally, a game consists of a triple
Γ = (N,S, u) where N = {1, . . . , n} is a finite player set, S is the n-fold product of action or strategy
sets (one for each player), and u : S → Rn represents players’ preferences: ui(s) is the utility attained
by i ∈ N when the strategy profile is s ∈ S. A (pure-strategy) Nash equilibrium NE is any strategy
profile s ∈ S with respect to which no player has an incentive to (unilaterally) deviate. That is, a
situation where each player is playing a best response to the n− 1-tuple of others’ actions.

In a weakest link (WL) game each player i ∈ N chooses an effort level si from some finite set
{0, 1, . . . ,K} (K = 1 above), and i’s payoff ui(s) = ui(s1, . . . sn) depends only on the chosen effort
level si and the minimum minj∈N sj across all players. In particular, it is increasing in si if si =
minj∈N sj , and decreasing in si if si > minj∈N sj . In words, each player wants to select exactly
the minimum of the other players, and everyone wants the minimum to be as high as possible. But
selecting high actions is risky because other players may select low actions.

In our setting K = 19 and the payoff is

6

minj∈N sj = 0 minj∈N sj = 1 minj∈N sj = 2 · · · minj∈N sj = 19
si = 0 ui(s) = 1 \ \ · · · \
si = 1 ui(s) = 1

2 ui(s) = 2 \ · · · \
si = 2 ui(s) = 1

3 ui(s) = 1 ui(s) = 3 · · · \
...

...
...

...
. . . \

si = 19 ui(s) = 1
20 ui(s) = 2

19 ui(s) = 3
18 . . . ui(s) = 20

Table 1: Weakest link payoff table with 20 possible strategy and payoff function in equation 1

ui(s) =
1 + minj∈N sj

1 + si −minj∈N sj
(1)

where si −minj∈N sj ≥ 0 (of course), and thus the payoff matrix is the one given in table 1.
It is easily seen that this game has precisely 20 equilibria, each of which attains when si = k for

every i ∈ N as k = 0, 1, . . . , 19. Furthermore, these equilibria are Pareto-rankable; that is to say,
si = 19 for every i ∈ N is the unique social optimum, and for 0 ≤ h < k ≤ 19, each player prefers
equilibrium si = k for every i ∈ N rather than si = h for every i ∈ N .

3.2.2 SLAC algorithm applied to WL game

The basic SLAC algorithm specifies how nodes should update their strategies and network neighbor-
hood under the assumption that they are involved in some on-going game interactions with neighbors.
Each node generates a utility measure (U) according to some interaction with its neighbors. The
higher the value of U the better the node is performing.

The algorithm is executed by each node and consists in it periodically comparing its own utility
(say Ui) with another node (say Uj) randomly chosen from the network. If Ui ≤ Uj then node i
drops all of his current links and copies all j’s links (adding a link to j itself) and j’s strategy - see
figure 1.

i ← this node
do periodically:

j ← GetRandomNode()
if Ui ≤ Uj
i.links ← j.links ∪ j
i.Strategy ← j.Strategy
with low probability mutate(i)

Figure 1: SLAC algorithm’s pseudocode.

In SLAC all the rewiring operation are symmetric — if node i makes a link to j then node j makes
a link to i and on the other hand if i drops a link to j the link from j to i has to be dropped as
well. Each node can maintain a maximum amount of links (called viewsize), if a new node has to be
added in an already full view, a randomly selected neighbor is dropped to make space for the new
link. The SLAC algorithm provides a rewiring mechanism analogous to tournament selection within
evolutionary computing. Nodes act in a highly boundedly rational way hoping to selfishly improve
their utility by copying better performing ones. Occasionally with low probability a node applies a
“mutation” function after copying another node. This involves changing the strategy randomly and
changing the links randomly.

7

i ← this node
for each j in i.Links
Strats ← Strats ∪ j.Strategy
i.Utility ← payoff for i.Strategy given Strats

Figure 2: Weakest Link single game round pseudocode.

The utility measure is provided by the game that is being played between node neighbors. In this
case the WL game. Periodically nodes play the WL game.

To play the WL game a node executes the function shown in figure 2. In our implementation WL
rounds are initiated locally by single nodes and only the payoff of the node which initiated the round
is affected by each single game, according to equation 1.

SLAC requires a utility value to be defined for each node. This is the average utility obtained from
the game played since last reproduction. Mutating the strategy consists in choosing with uniform
probability a random strategy between the possible ones. Mutating the links involves removing all
existing links and replacing with a single link to randomly chosen node from the population. We
mutated the strategy with probability ms and the links with probability ml. Our implementation of
a weakest link round is described in figure 2

3.2.3 Some Results

Our aim in these experiments was to discover how well SLAC is able to lead the network to a high
social optimum hence we are interested in the equilibrium reached by the system, the time needed
to reach it and the robustness of high social optimum equilibrium states to the invasion of nodes
following lower exploitative strategies.

We found that via randomized change (mutation) the network, over time, climes a staircase of
equilibria increasing in social utility - see figure 3 which shows a typical run. We also found this
to be scalable and robust. Figure 4 shows how results scale. In fact we see a certain amount of
reverse scaling which means we get better results from larger networks. Our intuition was that a
“ratchet” effect was in operation where only a small number of strategies of higher social optimum
would spread whereas lower strategies would be resisted creating robustness and an ever increasingly
equilibrium over time leading to optimum. We tested our intuition by turning off mutation effects
and manually inserting “seeds” into the system. These results can be seen in figure 5

3.3 FirmNet

In our work, we bridge organizational theory with computer science by adopting the SLAC (Selfish
Link-based Adaptation for Cooperation) protocol (Hales and Arteconi, 2006), developed to produce
cooperation in P2P networks. We modify the SLAC protocol and produce three algorithms to mimic
plausible individual decision-making routines of professionals in organizations.

FirmNet includes a number of nodes, which represent project managers. Project managers have
relationships with clients, receive tasks to be completed, represent profit centres and can create teams
to integrate different skills to perform a task. We assume an internal market with a job posting
mechanism in which employees can search within an organization in which team they prefer to work.
Incrementally modifying the picture, we describe three types of employees’ individual behaviour. In a
first step, we represent agents as simply replicating links and decision-making of successful colleagues.
In a second step, we assign to agents the ability to bargain their reward. Finally, we assume that
agents also consider success of project managers to decide how to select their team. We use an
agent-based model to simulate emerging network structures as a consequence of different employees’

8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
g.

 s
tra

te
gy

 p
la

ye
d

simulation cycle

avg. strategy played

(a) Typical run

 0

 5

 10

 15

 20

 0 20 40 60 80 100

av
g.

 s
tra

te
gy

 p
la

ye
d

simulation cycle

avg. strategy

(b) Initial stage

Figure 3: A typical single run showing how the average strategy value changes in the network by
cycle. The network has a fixed size of 4000 nodes. (a) shows the entire run to 10000 cycles,
(b) shows the same run but over the first few cycles showing detail not visible in (a). Each
strategy value is a possible equilibrium. The higher the value the higher the social utility
of the system. Notice the staircase effect as the system climbs toward higher equilibrium
over time. Chance mutation pushes the system to higher equilibrium because SLAC acts
like a “social ratchet” accepting and spreading higher equilibria but resisting invasion by
lower equilibrium strategies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 1000 10000

sim
ul

at
io

n
cy

cle

network size

avg. time

(a) Time for cooperation increase

 0

 5

 10

 15

 20

 1000 10000

co
op

er
at

io
n

le
ve

l

network size

avg. cooperation level

(b) Cooperation level at 5000 cycles

Figure 4: Average time needed to increase cooperation level in different network sizes and cooperation
level reached at 5000 cycles. 90% confidence intervals are shown. As can be seen larger
networks reach higher cooperation levels more quickly. Ten runs were performed for each
network size. The x-axis is on a log scale.

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400
 0

 100

 200

 300

 400

 500

st
ra

te
gy

re
pr

od
uc

in
g

no
de

s

simulation cycle

avg. strategy
reproductions

Figure 5: Experiment with no mutation and node injection (4000 node network). Initially all nodes
are set to strategy 0 (minimum). Two nodes playing strategy 5 are injected at cycle 200.
Two nodes playing strategy 10 are injected at cycle 400. Two nodes playing strategy 19
(maximum) are injected at cycle 600. To test robustness, 1000 nodes playing strategy 0
(minimum) at injected at cycle 800. 2000 nodes playing strategy 0 are injected at 3000.
The lower dashed line shows the number of node movements (copying between nodes)
made in each cycle. Here the “social ratchet” effect is clear: A single pair of nodes at
higher strategy spread rapidly over the network but even a large number of lower strategy
nodes are resisted.

individual decision-making and we assess the impact on firm performances and to wealth distribution
within the organization.

3.3.1 Model Specifics

The FirmNet model contains two kind of agents: the node-skill agents (NS) and the node-task agents
(NT). These agents are nodes in a Peer-to-Peer Network; they all hold a certain skill (S) that they
use to perform some task. Agents NT, in addition, play the role of project managers, have direct
contacts with clients and receive a certain Task to be completed. To complete a task, it is necessary
to complete three jobs, each requiring a different skill, and NT agents need to form a team attracting
NS agents, which hold the required skill. Thus, the difference between NT and NS agents is that
NT agents arbitrage, on behalf of the firm, the relationship between skills and clients. Hence, the
model simulates an organizational network in which teams arise having certain skills. The designed
organization network is a Peer-to-Peer Network in which each node has a maximum number of links
(network degree). Each link is bidirectional; a connection of a node a to another node b implies a
connection of node b to node a. Links are undirected so the entire network can be considered as an
undirected graph where each vertex is a node and each edge is a link.

The state variables of each node are: a task flag which indicates if the node has a task or not;
a skill type (S) which is randomly initialized within a set of 5 elements S ∈ {1, 2, 3, 4, 5} indicating
the ability held by the single node; a utility (U), accumulated by each node after a certain task is
completed; a list of neighbors (local view); a commission (α) which is the percentage that a task node
is willing to pay to its employees; and an accept threshold (β) indicating the minimum amount of
payoff a certain NS node wants to work on certain jobs.

The Skill is the only parameter which does not evolve: it is not copied during the reproduction
phase (see later), but it may “mutate” (that is change) with a very small probability. The simulation

10

At each cycle if

!

N
i == NT :

if (

!

N
i .acc == false) && (

!

N
i .task.contains(

!

N
i .skill))

then

!

N
i .acc = true;

!

N
i .task.remove(

!

N
i .skill);

 if (

!

N
i .task != empty) then for all

!

N
i neighbors j:

 if (

!

N
i .task.contains(

!

N j .skill) && (

!

N j .acc == false)

 && (

!

N j .benefit >

!

N j .beta)) then

!

N j .acc = true;

!

N j .task.remove(

!

N j .skill);

end

(a) FirmNet algorithm

 3

 5 2

 1

 2

 5

2 3 5

+1

i

r

j

k
acc = false

acc = true

!

" > (1# i.$)

+0.7

+0.6

v

4

Task

(b) Schematic diagram

Figure 6: Differences in average wealth for different degrees for different algorithms (a) and percentage
of completed tasks (b). Here tasks are assigned every 20 cycles

time is divided into cycles. At cycle 0, with probability 0.25, nodes receive a task to be completed.
The tasks are produced selecting at random three values from a set of five elements (J ∈ {1, 2, 3, 4, 5});
the receiving nodes will then act as a project manager and will start looking for employees among
their immediate neighbors (figure 6(a) shows the pseudo-code for the FirmNet model). Suppose node
i has to complete a task composed of jobs j1 = 2, j2 = 3 and j3 = 5, what will happen is shown in
figure 6(b):

• node i will first check if itself is able and free (acceptance flag set to false) to work on one of
such jobs; if so, it will set its acceptance flag to true and the job will be removed from the task
list;

• node i will look among its immediate neighbors for nodes willing to work on the remaining
jobs: if among them it finds some available node (say node j) with the right skill and a “β”
value smaller then the margin i is willing to pay, j acceptance flag will be set to true and the
job will be removed from the task list;

• if the task is now completed, payoff will be distributed to all the involved nodes; otherwise next
cycle node i will execute the same algorithm starting from the previous point.

This means that NT agents have the duty of allocating the tasks to the NS. Payoffs are distributed
only after the entire task is completed. In our model each job gives the same reward (1) and NT
will ask the recruited neighbors for a commission α on such payoff. Suppose node i has α = 0.3; this
means that if node j will execute a certain job for NT , node i will get at least a 0.3 payoff (i.U +=
0.3) and node j.U += 0.7. This happens in the case the node j accept threshold is j.β = 0.7. If for
example j.β = 0.6 node i would get a 0.4 payoff (i.U += 0.4) and j.U += 0.6. If NT agents have
two or more neighbors able to complete a certain task, they will select the one with the smallest β.

3.3.2 CSLAC, SLAC-L and CSLAC-L Variants

The CSLAC (Competitive-SLAC) algorithm is very similar to the original SLAC (see figure 1). In
this version the rewiring is carried out identically to SLAC. The difference is in the copying of the
strategies. The strategy of a node is considered to be the α and β values of the nodes. While in
SLAC the losing node copies the winner nodes strategy without taking into account its values, here
the losing node before coping β checks if some of the winners neighbors has its skill. If this is the
case and the node also has a smaller β than its own, it will copy this value minus a 0.1 constant. The

11

0,6205

1,5532

9,281

1,456

4,9593

19,4725

7,1817

3,0901

1,2417

3,9212

0,7217

13,9968

0

5

10

15

20

25

3 5 10 20

Network Degree

D
if

fe
r
e
n

c
e
 A

W
N

T
 A

W
N

S SLAC-L

CSLAC-L

CSLAC

(a) Wealth difference

0,2247

0,3863

0,8252

0,2381

0,4109

0,6677

0,8571

0,405

0,6901

0,9218

0,9935

0,6334

0

0,2

0,4

0,6

0,8

1

1,2

3 5 10 20

Network Degree

P
e
r
c
e
n

ta
g

e
 o

f
C

o
m

p
le

te
d

 T
a
s
k
s

SLAC-L

CSLAC-L

CSLAC

(b) Completed jobs

Figure 7: Differences in average wealth for different degrees for different algorithms (a) and percentage
of completed tasks (b). Here tasks are assigned every 20 cycles

rationale behind this, is to create competition between NS agents. If a certain NS is going to join a
new community, it will go in competition with the other nodes having its same skill by lowering it
own accept threshold (β).

We compared the performance of CSLAC with other two variants of the SLAC algorithm: we called
these SLAC-L and CSLAC-L. The “L” suffix stands for limited, meaning that in these versions, the
SLAC and CSLAC algorithms are performed only by and among NS agents. We introduced these
algorithms to to explore a situation in which professionals (NS nodes) and project managers (NT
nodes) are embedded in separate communities and therefore consider only own peers wealth to form
expectations concerning future payoffs.

3.3.3 Some Results

Simulation experiments highlight three key findings. First, the CSLAC algorithm is the most pow-
erful algorithm, among the three used. Both under stable and dynamic environmental conditions,
the CSLAC algorithm shows superior performances in terms of percentage of tasks completed and
accumulated firm’s wealth. Second, the algorithms have an impact of wealth redistribution within
the organization. As the focal firm’s performances increase, the average wealth of both NT and
NS nodes increases but the discrepancy between NT and NS nodes’ wealth becomes larger. Third,
the performances of the algorithms depend on structural features of the network because both for
low and high degree of the network (number of links that each node may have), the differences in
performance of the algorithms tend to decrease. Some results can be seen in figure 7

3.4 Summary

In this section we have seen how variants of the SLAC algorithm can be applied to different do-
mains requiring certain levels of group coordination to produce socially beneficial results. In the
Weakest Link game it was shown how a kind of “social ratchet” mechanism operates to push the
system towards social optimum. We also investigated the notion of “seeding” a network but injecting
some small number of nodes which follow a more socially optimal strategy. In some sense this can
be viewed as a kind of high-level run-time programming activity, where strategies might represent
code replicating over the network to restructure interactions dynamically. In the FirmNet model,
intuitions from organizational theory have been applied to produce variants of SLAC that involve
some level of subcontracting between nodes. The results may have applicability to understanding

12

human systems and engineering computer systems. In both cases the underlying mechanism results
from the selection of productive groups or teams based on purely individual choices and selection
methods. An individual node attempts to increase it’s own payoff by copying others that outperform
them. This emerges social structures that mediate interaction towards pro-social behavior.

4 Conclusion

The work we have outlined in this workpackage aims towards the production of predictable and
efficient distributed networks in uncertain and dynamic environments. Two main approaches have
been presented, one focusing on the enforcement of rational action and the other on the evolution
of strategies (or routes) via an adaptive process. These two approaches are not exclusive and could
possibly be combined in certain circumstances. For example, where the evolutionary / adaptive
approach actually converges to rational behavior, an authority approach could add stability against
malicious attacks from nodes behaving irrationally and hence not in the correct adaptive way. Where
the two approaches differ is when irrational behavior is actually selected by evolution especially when
rational behavior is suboptimal at the system level (e.g, in social dilemmas or when pure altruism is
required).

References

[1] Dolev, S., Schiller, E. M. and Spirakis, P. G. (2006) Game Authority: for Robust Distributed
Selfish-Computer Systems. [DELIS-TR-0395]

[2] Fischer, S., Kammenhuber, N., and Feldmann, A. (2006) REPLEX — Dynamic traffic engi-
neering based on Wardrop routing policies. In Proc. 2nd Conference on Future Networking
Technologies (CoNext), pages. 6–17, Lisboa, Portugal, December 2006. pp. 6–17. [DELIS-TR-
0427]

[3] Fischer, S., Räcke, H. and Vöcking, B. (2006) Fast convergence to Wardrop equilibria by adaptive
sampling methods. In Proc. 38th Ann. ACM. Symp. on Theory of Comput. (STOC), pages 653–
662, Seattle, WA, USA, May 2006. ACM. [DELIS-TR-0424]

[4] Hales, D. and Arteconi, S. (2006) SLACER: A Self-Organizing Protocol for Coordination in P2P
Networks. IEEE Intelligent Systems 21(2):29-35. [DELIS-TR-0368]

[5] Hales, D. and Babaoglu, O. (2006) Towards Automatic Social Bootstrapping of Peer-to-Peer
Protocols. ACM SIGOPS Operating Systems Review (Special Issue on Self-Organizing Systems)
40(3). [DELIS-TR-0371]

[6] Hales, D. and Edmonds, B. (2005) Applying a socially-inspired technique (tags) to improve
cooperation in P2P Networks. IEEE Transactions in Systems, Man and Cybernetics - Part A:
Systems and Humans, 35(3):385-395. [DELIS-TR-0111]

[7] Holland, J. (1993) The Effect of Lables (Tags) on Social Interactions. SFI Working Paper 93-
10-064. Santa Fe Institute.

[8] Jelasity, M. and M. van Steen (2002), “Large-Scale Newscast Computing on the Internet”.
Technical Report IR-503, Vrije Universiteit Amsterdam.

[9] Marcozzi, A.; Hales, D. (2006) Emergent Social Rationality in a Peer-to-Peer System. Technical
Report UBLCS-2006-23, University of Bologna, Dept. of Computer Science. [DELIS-TR-0372]

13

[10] Mollona, E. and Hales, D. (2006) Knowledge-Based Jobs and the Boundaries of Firms. Journal
of Computational Economics 27(1):35-62. [DELIS-TR-0230]

[11] Mollona, E.; Marcozzi, A. (2006) FirmNet: The Scope of Firms and the Allocation of Task in a
Knowledge-Based Economy. Technical Report UBLCS-2006-26, University of Bologna, Dept. of
Computer Science. [DELIS-TR-0375]

[12] Riolo, R.; Cohen, M.; Axelrod, R. (2001) Evolution of cooperation without reciprocity. Nature
414, pp. 441-443.

[13] Rossi, G., Arteconi, S., Hales, D. (2006) Evolving Networks for Social Optima in the “Weak-
est Link Game”. Technical Report UBLCS-2006-21, University of Bologna, Dept. of Computer
Science. [DELIS-TR-0369]

14

