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1 outline

coalition structures and optimality

artificial intelligence (Al) and search

game theory and stable optimal coalition structures
behavioral generation: payoff comparisons
coalitions behavior: efficient worth-sharing

two alternative sharing rules

agents behavior: random comparisons

conclusion



2 notation A

N ={1,...,n} MAS population
2N = fA: A C N} power set of coalitions
P = {Al, e ,A|p|} C 2N\ {0} coalition structure:

U Ap=Nand Aj,NA,=0forl <h<k<|P]|
1<k<|P|

A € P is a block of coalition structure (or partition) P
oN

v — R coalitional game: v(A) = worth of A

> Acp V(A) = worth of coalition structure P
optimal coalition structures have maximum worth
p 2N — R is the Mabius inversion (derivative) of v

pl(A) = v(A) — S gca p¥(B) for every A € 2V



3 notation B

v(0) =0and N D A D B = v(A) > v(B) (monotone)

if v is superadditive (i.e., forevery A, B € 2, ANB = ()

v(AUB) > v(A)+v(B)),

then v(N) > > v(A)
AeP
for every P; the coarsest coalition structure is optimal

if v is subadditive (i.e., for every A, B € 2N ANB =

v(AUB) < v(A)+v(B)),
then ) wv(i) > ) wv(A)

€N AeP
for every P; the finest coalition structure is optimal.

if merging is neither always better, nor always worse, then

optimal coalition structures are generic; if uY(A) > 0 for
every A € 2V, then v(N) > ¥ 4cp v(A) for every P



4 focus

finding optimal coalition structures is NP-hard
Al approach: (branch-and-bound) search, non-behavioral

coalition structure generation defines a (possibly stochas-
tic) time pattern P9, P ... P’ of coalition structures

blocks A = A! € P?! of prevailing coalition structures
Pt ¢t > 0 are dynamic coalitions, changing in time ¢

behavioral coalition structure generation: selfish behavior
of computationally bounded agents determines evolution

this may approach the problem of maximizing the (ex-
pected) stream of worth of prevailing coalition structures
with an underlying game v changing over time



5 a coalition formation game

given coalitional game v, every agent ¢ € NN has strategy
setSi:{A€2N:A9i}

n-tuple s = (s1,...,8n) € S = X S; of strategies
1<i<n

results in coalition structure Ps where for 7,5 € N

SiZSjﬁ{i,j}gAGPS

agent ¢+ € N has utility u; : S — R such that for every
se S, ifie A€ Ps, then

Z n’ (B)

u;(s) = B

AD B33

this strategic game is a potential game (i.e., it admits a
potential, see Monderer-Shapley (1996)), and thus has
at least one (pure-strategy Nash) equilibrium s* € S

equilibria s* result in optimal coalition structures Pgx



6 payoff comparisons

behavioral coalition structure generation cannot be strate-

gic, in a strict sense, because the population is large

at any time, each agent is a member of some (dynamic)
coalition and receives a share of its worth

periodically, agents compare their payoff (or a weighted
average) with that of a randomly selected other agent;
if the former weakly exceeds the latter, then they stay;
otherwise, they move into the other agent’s coalition

coalitions’ payoff policy becomes crucial for performance;
it determines the only little information agents have when
choosing whether to move or stay

from coalition formation games, worth-sharing through
Mobius inversion should be superior for performance



7 alternative payoffs

main idea: comparing two efficient sharing rules; basi-
cally, for every i € A € Pt t >0

oAy v(A)

¢’L (U ) T |A|

pl(B
si(v) = x> 1)

BCA:B>3 | |
example: v(A) =~(|A|),~v:{0,1,...,n} - R
A

1+ (|A] — m)?
n = 60; draw m € {2,3,4,5,6,10,12, 15, 20, 25,30}

v(A) = (symmetric)

n m
m 1+ (m —m)?

— n for every m

max > v(A) =

AeP
v symmetric = ¢; (’UA) = ¢; (UA) e Aec2N

yet, introducing memory yields ¢ (UA) %= ¢; (’UA)



8 membership age (H = memory)

h(i) = ageofic Aec PL1<h(i)<H>1
aj, = number of A-members aged h,a;, < |A]

bj, = number of B-members aged h, A O B > 1

v(A) - h(i)

"o gy "
ap>0

di(v) =

o Ay u¥(B) - h(i) ..
o (v )‘B%bh(@-)- S - if ut (B) 2 0
B>

if u’(B) <0

BCA by 2 h
by, >0



9 agents behavior A

at ¢, with Pt—1 = {Al, e A|Pt—1|} from before,
FIRSTLY a fraction of agents decides whether move,
SECONDLY (new) dynamic coalitions compute payoffs
for each 7 who decides whether to move do:

with probability e draw & € {0,1,...,|P*~1|]

if £ = 0, then 7 mutates (into a 1-block {i} € P?)

if ¢ € A then 72 does not move

otherwise 7 moves into block A

with probability 1 — € randomly select some agent 7, pos-

sibly of same age as ¢ but in another block, and move 2
into 7's block if 5 does strictly better



10 agents behavior B

€ quantifies the random part of the generation process
1 — € quantifies the drift

rather than keeping these parts fixed, they can change
depending on recent performance:

e(t) = eif f(PT™1) = f(P*72) >0

f(P1) — f(P2)
min{f(PY) — f(P'-1):0 <t <t—1}
if f(P'1) — f(P2) <0

e(t) =

this may be generalized by considering a weighted average
of performance over last H cycles

similarly, agents may compare a weighted average of last
H received payoffs



11 Conclusion

if this was to be tested through simulations, then:
v, u? : 2V — R are 2" — 1-dimensional (a lot of data!)
v symmetric = v, u¥ are n — 1-dimensional (better)

type-symmetry: N is partitioned into K > 1 types, with

n;. agents of each type k = 1,..., K; then, v, u? are
( I ng+1)— 1-dimensional
1<k<K

does this fit PEERSIM?

e ‘philosophically’

e computationally



