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2 notation A

N = f1; : : : ; ng MAS population

2N = fA : A � Ng power set of coalitions

P =
n
A1; : : : ; AjP j

o
� 2Nn f;g coalition structure:

[
1�k�jP j

Ak = N and Ah\Ak = ; for 1 � h < k � jP j

A 2 P is a block of coalition structure (or partition) P

v : 2N ! R coalitional game: v(A) = worth of A

P
A2P v(A) = worth of coalition structure P

optimal coalition structures have maximum worth

�v : 2N ! R is the Möbius inversion (derivative) of v

�v(A) = v(A)�P
B�A �

v(B) for every A 2 2N



3 notation B

v (;) = 0 andN � A � B ) v(A) � v(B) (monotone)

if v is superadditive (i.e., for everyA;B 2 2N ; A\B = ;

v(A [B) � v(A) + v(B)),

then v(N) �
X
A2P

v(A)

for every P ; the coarsest coalition structure is optimal

if v is subadditive (i.e., for every A;B 2 2N ; A\B = ;

v(A [B) � v(A) + v(B)),

then
X
i2N

v(i) �
X
A2P

v(A)

for every P ; the �nest coalition structure is optimal.

if merging is neither always better, nor always worse, then
optimal coalition structures are generic; if �v(A) � 0 for
every A 2 2N , then v(N) > P

A2P v(A) for every P



4 focus

�nding optimal coalition structures is NP-hard

AI approach: (branch-and-bound) search, non-behavioral

coalition structure generation de�nes a (possibly stochas-
tic) time pattern P 0; P 1; : : : ; PT of coalition structures

blocks A = At 2 P t of prevailing coalition structures
P t; t � 0 are dynamic coalitions, changing in time t

behavioral coalition structure generation: sel�sh behavior
of computationally bounded agents determines evolution

this may approach the problem of maximizing the (ex-
pected) stream of worth of prevailing coalition structures
with an underlying game v changing over time



5 a coalition formation game

given coalitional game v, every agent i 2 N has strategy
set Si =

n
A 2 2N : A 3 i

o
n-tuple s = (s1; : : : ; sn) 2 S = �

1�i�n
Si of strategies

results in coalition structure Ps where for i; j 2 N

si = sj , fi; jg � A 2 Ps

agent i 2 N has utility ui : S ! R such that for every
s 2 S, if i 2 A 2 Ps, then

ui(s) =
X

A�B3i

�v (B)

jBj

this strategic game is a potential game (i.e., it admits a
potential, see Monderer-Shapley (1996)), and thus has
at least one (pure-strategy Nash) equilibrium s� 2 S

equilibria s� result in optimal coalition structures Ps�



6 payo¤ comparisons

behavioral coalition structure generation cannot be strate-
gic, in a strict sense, because the population is large

at any time, each agent is a member of some (dynamic)
coalition and receives a share of its worth

periodically, agents compare their payo¤ (or a weighted
average) with that of a randomly selected other agent;
if the former weakly exceeds the latter, then they stay;
otherwise, they move into the other agent�s coalition

coalitions�payo¤ policy becomes crucial for performance;
it determines the only little information agents have when
choosing whether to move or stay

from coalition formation games, worth-sharing through
Möbius inversion should be superior for performance



7 alternative payo¤s

main idea: comparing two e¢ cient sharing rules; basi-
cally, for every i 2 A 2 P t; t � 0

�i
�
vA
�
=

v (A)

jAj

��i
�
vA
�
=

X
B�A:B3i

�v(B)

jBj

example: v(A) = (jAj);  : f0; 1; : : : ; ng ! R

v(A) =
jAj

1 + (jAj �m)2
(symmetric)

n = 60; draw m 2 f2; 3; 4; 5; 6; 10; 12; 15; 20; 25; 30g

max
P

X
A2P

v(A) =
n

m
� m

1 + (m�m)2
= n for every m

v symmetric ) ��i
�
vA
�
= �i

�
vA
�
; i 2 A 2 2N

yet, introducing memory yields ��i
�
vA
�
6= �i

�
vA
�



8 membership age (H = memory)

h(i) = age of i 2 A 2 P t; 1 � h(i) � H � 1

ah = number of A-members aged h; ah � jAj

bh = number of B-members aged h;A � B 3 i

�i(v
A) =

v(A) � h(i)
ah(i) �

P
h2H
ah>0

h

��i (v
A) =

X
B�A
B3i

�v(B) � h(i)
bh(i) �

P
h2H
bh>0

h
if �v (B) � 0

��i (v
A) =

X
B�A
B3i

�v(B) � (H � h(i) + 1)
bh(i) �

P
h2H
bh>0

h
if �v (B) < 0



9 agents behavior A

at t, with P t�1 =
n
A1; : : : ; AjP t�1j

o
from before,

FIRSTLY a fraction of agents decides whether move,

SECONDLY (new) dynamic coalitions compute payo¤s

for each i who decides whether to move do:

with probability � draw k 2
n
0; 1; : : : ; jP t�1j

o
if k = 0, then i mutates (into a 1-block fig 2 P t)

if i 2 Ak then i does not move

otherwise i moves into block Ak

with probability 1�� randomly select some agent j, pos-
sibly of same age as i but in another block, and move i
into j�s block if j does strictly better



10 agents behavior B

� quanti�es the random part of the generation process

1� � quanti�es the drift

rather than keeping these parts �xed, they can change
depending on recent performance:

�(t) = � if f(P t�1)� f(P t�2) � 0

�(t) =
f(P t�1)� f(P t�2)

minff(P t0)� f(P t0�1) : 0 < t0 � t� 1g
if f(P t�1)� f(P t�2) < 0

this may be generalized by considering a weighted average
of performance over last H cycles

similarly, agents may compare a weighted average of last
H received payo¤s



11 Conclusion

if this was to be tested through simulations, then:

v; �v : 2N ! R are 2n � 1-dimensional (a lot of data!)

v symmetric ) v; �v are n� 1-dimensional (better)

type-symmetry: N is partitioned into K � 1 types, with
nk agents of each type k = 1; : : : ;K; then, v; �v are
(

Q
1�k�K

nk + 1)� 1-dimensional

does this �t PEERSIM?

� �philosophically�

� computationally


