
Exercise 2.1 – A first NetLogo program
Open NetLogo
Click on the “Code” tab at the top-middle-right of the tool bar.
This is where you can type and edit NetLogo programs. Programs are composed of
procedures. Most NetLogo programs contain at least two procedures called “setup” and
“go”.
Type in the following program which defines these two procedures:

to setup
 clear-all
 create-turtles 100 [
 setxy random-pxcor random-pycor
 set heading random 360
]
 reset-ticks
end

to go
 ask turtles [
 forward 0.1
 if count turtles-here > 1 [
 right random 360
 forward 1
]
]
 tick
end

The setup procedure clears the environment and creates 100 turtles placing each in a
random location and pointing them in random directions.

The go procedure asks each turtle to move forward a short distance (one tenth of a patch)
and then check if any other turtles are in the same patch as itself. If this is so then the turtle
changes to a random direction and moves forward the length of a patch.

Go back to the Interface screen by clicking on the “Interface” tab at the top-middle-left of the
toolbar.

Since both setup and go are now defined you could type them directly into the command
centre. However it is convenient to create two buttons to execute them.

Task: Create two buttons. Make one execute the “setup” procedure and the other execute
the “go” procedure. When creating the go button check the “forever” checkbox at the top-left
of the button dialogue. This means that when you press the go button it will repeatedly
execute the go procedure until it is pressed again.

Click the setup button you just created.

You should see a set of randomly generated agents in the environment.

Click the go button you just created.

You should see the agents moving about very quickly.

To stop the program click the go button again.

In order to see the movement more clearly we can force display updates to happen on each
tick of the model. Note that in the procedure “go” we put a “tick” command at the end.

On the toolbar under the “view updates” checkbox select “on ticks” from the dropdown.

Click the go button to run the program.

Now you should be able to see the turtles moving in straight lines until they hit each other
(enter an occupied patch) and then they change to a random direction and move forward
one patch distance.

To stop the program click the go button again.

Task: Create a slider that ranges from 1 to 1000 assigned to the global variable “popsize”.
Go to the Code screen and modify the setup function so that it creates “popsize” turtles
rather than 100.

Go back to the Interface screen and test different popsize values by changing the popsize
slider and clicking on setup.

Exercise 2.2 – Birth and death of turtles
We will modify the program so that instead of turtles changing direction when they move
into an occupied patch they die.
Go to the Code screen and modify the go procedure in the following way:
to go
 ask turtles [
 forward 0.1
 if count turtles-here > 1 [die]
]
 tick
end

The die command immediately deletes the turtle that executes it.

Go back to the Interface screen and execute the program to verify that turtles now die when
they enter an occupied patch.

We will modify the program so that each turtle “gives birth” with some probability.

Task: Create a slider that ranges from 0 to 1 in increments of 0.01 assigned to the global
variable “birthprob”.

Go to the Code screen and modify the go procedure in the following way and add the new
function “to-report prob[x]”:

to go
 ask turtles [
 forward 0.1
 if count turtles-here > 1 [die]
]
 ask turtles [
 if prob birthprob [
 hatch 1 [
 set heading random 360
 forward 1]
]
]
 tick
end

to-report prob[x]
 report (random-float 1 < x)
end

Note: In the go procedure we have added another ask turtles command which makes each
turtle hatch one new turtle (which is a clone of itself inheriting all the same values other than
the who value – remember who is always a unique number for each turtle) with birthprob
probability.
The commands after the hatch command are immediately executed by the newly hatched
turtle. In this case the turtle points in a random direction and moves forward one patch
length.
We have also defined a new procedure called “prob” using the “to-report” form. This defines
a “reporter procedure” that takes an argument “x” and returns a single value (in this case a
true / false value) using the report command. Here then we see how to pass arguments and
how to return values. Note: procedures that do not return values, such as setup and go, are
called “command procedures”.
The prob reporter procedure returns true with probability equal to its argument. Hence “prob
1” is always true and “prob 0” is always false. The random-float command produces a
random float between 0 but strictly less than it’s argument (here being 1).
Go back to the interface screen and experiment with different birthprob settings. Note, you
can change this value while the problem is running by moving the slider. Global variables
change immediately when they are changed on the interface screen.

Exercise 2.3 – Adding outputs to the interface
So far we have added inputs in the form of sliders and buttons to the interface. However we
can also add outputs such as charts and values.

We will add a dynamic chart that displays the population size over time.
From the Interface screen:
Select “Plot” from “+Add” dropdown.
Click on a blank area. A plot dialogue should appear. In the name field type:
population size

In the “pen update commands” list make sure the following is entered:
plot count turtles

Note: this may already appear as the default value.
Click OK
Task: Experiment with different initial population sizes and birthprob values notice how the
plot changes. Try starting the population size at 1 and the birthprob at 0 and then slowly
increasing birthprob as the program runs to see the effect on the population size.
We will add an output that prints the population size.
Select “Monitor” from the “+Add” dropdown.
Click on a blank area. A Monitor dialogue should appear. In the “Reporter” field enter:
count turtles

Click OK
Try running the program again. The monitor should display the dynamic population size.

Exercise 2.4 – Adding variables to turtles and global variables to programs
In the Code screen add the following at the very top of the program:
globals [deaths]

turtles-own [age]

Note: the globals command specifies a list (in square brackets) of global variables for the
entire program. The turtles-own command specifies a list of variables local to each turtle.
We will update the program so that for each turtle age variable is initialised to 0 and
incremented for each tick. In addition we will initialise deaths to 0 at the start of each go
procedure call and increment it for each death that occurs.
Modify the setup and go procedures as below:
to setup
 clear-all
 create-turtles popsize [
 setxy random-pxcor random-pycor
 set heading random 360
 set age 0
]
 reset-ticks
end

to go

 set deaths 0
 ask turtles [
 set age age + 1
 forward 0.1
 if count turtles-here > 1 [
 set deaths deaths + 1
 die]
]
 ask turtles [
 if prob birthprob [
 hatch 1 [
 set age 0
 set heading random 360
 forward 1]
]
]
 tick
end

Go to the Interface screen. We will add a new Monitor to show the mean (average) age of
the population.
Select “Monitor” from the “+Add” dropdown.
Click on a blank area of the screen.
In the Monitor dialogue type the following in the “Reporter” field
mean [age] of turtles

In the “Display Name” field type:
age

Click OK.
Note: the “of” reporter returns a list containing each age turtle variable and the mean
reporter calculates the mean of a list.
Try running and the program and varying birthprob to see how it changes the mean turtle
age.
We can also create a histogram showing the distribution of a variable. We will create one
for the age turtle variable. Create a new plot output on a blank part of the screen.
In the plot dialogue in the “X max” field type:
200

Under “Pen update commands” type:
histogram [age] of turtles
Click on the pen icon to the left of what you just typed. This will open a pen dialogue. From
the “Mode” dropdown select “Bar”. In the Interval field type:
10

Click OK on both dialogues. You should now see histogram with 10 bins. Try running the
program to see the output. Try setting popsize at 1 and birthprob at 0.01. Run the program
and then gradually increase birthprob to see the effect.
Task: Create a new Monitor that displays the deaths global variable. Create two new plots
for the age and deaths. Test them by running the program.

Task: Add a new global variable called “births” to the program and modify the go procedure
so it records how many births happen in each cycle. Create a new plot that displays births
over time. Create a new monitor that displays the births value. Test it by running the
program.

